

Project Nr. 2011/0003/2DP/2.1.1.1.0/10/APIA/VIAA/041

EIROPAS SAVIENĪBA

Moisture Risks in Multi-layered Walls -Comparison of COMSOL and WUFI®PLUS Models with Experimental Results

Ansis Ozolins^{1*}, Andris Jakovics¹, Janis Ratnieks¹

¹Laboratory for Mathematical Modeling of Technological and Environmental Processes, University of Latvia *ansiso@inbox.lv

Main goal

Estimating risks of mould growth under Latvian climate conditions using 3 different approaches:

- experimental results in real test houses
- software WUFI[®]PLUS (3D model)
- COMSOL (1D model)

Governing equations

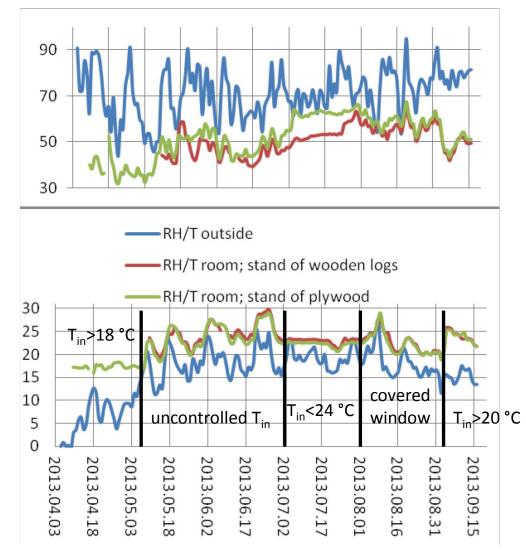
Heat transfer Moisture transfer

$$\frac{\partial}{\partial x} \left(\lambda \frac{\partial T}{\partial x} \right) + h_v \frac{\partial}{\partial x} \left(\delta_p \frac{\partial (\varphi P_{sat})}{\partial x} \right) = \rho_s \left(c_s + w c_w \right) \frac{\partial T}{\partial t}$$
$$\frac{\partial}{\partial x} \left(D_\varphi \frac{\partial \varphi}{\partial x} \right) + \frac{\partial}{\partial x} \left(\delta_p \frac{\partial (\varphi P_{sat})}{\partial x} \right) = \rho_s \frac{dw}{d\varphi} \frac{\partial \varphi}{\partial t}$$

Variables: temperature and relative humidity $T(t, x), \varphi(t, x)$

see "Simultaneous Heat and Moisture Transport in Building Components." (Kunzel, H.M.) for details

Test stands of houses



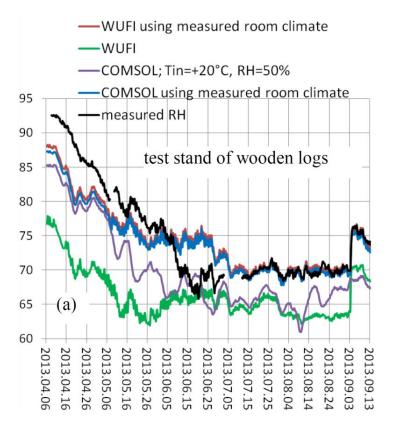
Five test stands was built for the first time in Riga, Latvia. These test stands can help to analyse moisture risks in a multi-layared wall since moisture can negatively influence building's sustainability and human health

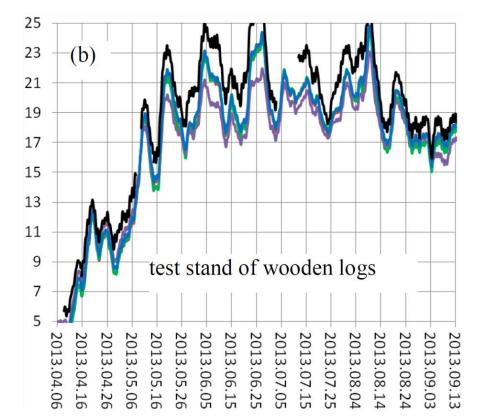
Description of building construction walls

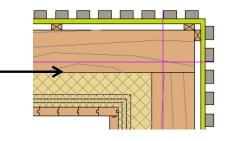
Test stands	d	λ	μ	
	m	W/(m·K)	[-]	
Stand of plywood				
panels Outside				
Plywood	0.02	0.17	700	
Mineral wool	0.2	0.036	1	
Plywood	0.02	0.17	700	critic
Fibrolite	0.075	0.068	2	place
Lime plaster	0.015	0.7	7	
Stand of wooden logs Outside				
Wooden logs	0.2	0.13	130	
Mineral wool	0.2	0.036	1	
Wooden log	0.04	0.13	130	

Outside and inside climate

daily average relative humidity and temperature

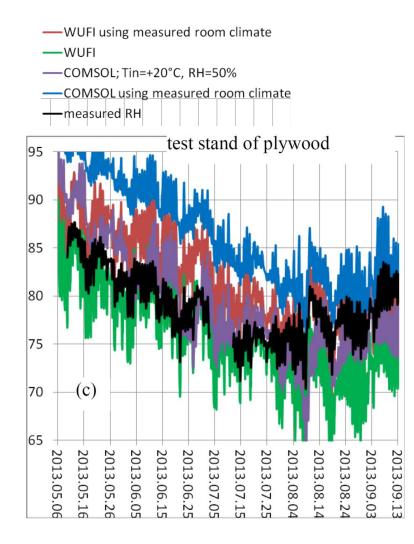

Different room climate were ensured: uncontrolled indoor temperature, heating, cooling, covered windows. Indoor relative humidity has been fluctuated for free floating conditions all the time period

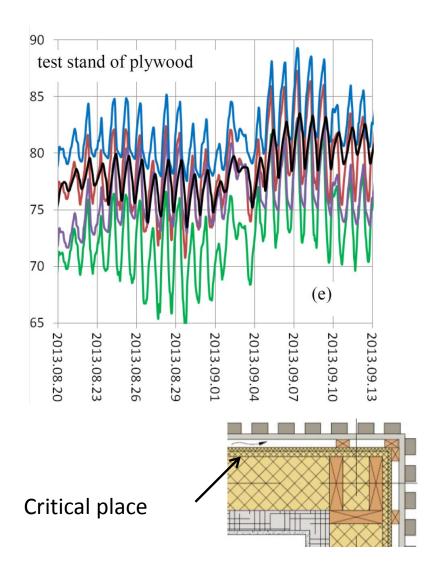

Obtaining indoor climate


Several approaches were used for estimating room climate :

- measured indoor relative humidity and temperature (WUFI®PLUS, COMSOL)
- calculated φ_{in} and T_{in} (WUFI[®]PLUS)
- constant φ_{in} and T_{in} (COMSOL)

Moisture risks for the test stand of wooden logs





Critical place

Moisture risks for the test stand of plywood

Conclusion

- Simple 1D model, implemented in COMSOL Multiphysics, works well for estimating mould growth risks in a multi-layered building constructions.
- If high risks of condensate formation in a construction could also occurs, WUFI PLUS shows better results in a comparison with measured results.

Further works

- The comparison of measurements with thus obtained by WUFI®PLUS and COMSOL Multiphysics for a longer time period.
- Coupled heat and moisture simulations using 2D and 3D model implemented in COMSOL Multiphysics

Project Nr. 2011/0003/2DP/2.1.1.1.0/10/APIA/VIAA/041

EIROPAS SAVIENĪBA

Thanks for attention!