Modeling of Transport Phenomena in Metal Foaming

B. Chinè^{1,3} and M. Monno^{2,3}

¹Instituto Tecnològico de Costa Rica, Costa Rica; ²Politecnico di Milano, Italy; ³ Laboratorio MUSP, Macchine Utensili e Sistemi di Produzione, Piacenza, Italy.

bchine@itcr.ac.cr

October 23-25

Macchine Utensili e Sistemi di Produzione

2

Presentation overview

- Introduction
- Indirect foaming via precursor
- Bubble expansion by mass diffusion
- Mathematical model in Comsol Multiphysics
- Numerical results
- Conclusions

Metal foams

Uniform gas-liquid mixture (gas-metal or gas-alloy) in which the volume fraction of the liquid phase is small (10-20%: wet foam, <10% dry foam)

D.J. Durian (UCLA): ...a random packing of bubbles... or ...a most unusual form of condensed matter...

melted Al and

Al metal foam

solidified metal foam

Indirect foaming via precursor: precursor

solid precursor

Precursor : compacted AI (or AI alloy) and foaming agent

- mixing of a foaming agent powder (TiH_2) and the base metal powder (Al or Al alloy)
- cold compacting the powder
- extrusion of the pre-compacted billet in order to obtain a precursor material whose density is close to that of the base metal

Foaming process

large foam expansion, Al is largely melted (T_M= melting temperature)

X ray image of a foamed precursor

- 0: thermal expansion of the metal
- I: bubble nucleation in solid metal/ TiH2 decomposes, H₂ gas starts to be released
- II: bubble expansion (small) in the semi-solid range $(T < T_M)$ / much H₂ gas is released
- III: bubble expansion in a metal, largely melted $(T \approx T_M)/H_2$ gas is highly released
- IV: initial foam collapse (can be avoided by foam solidification)

Indirect foaming via precursor: physical phenomena

Foaming is a complex phenomena:

- simultaneous mass, momentum and energy transfer mechanisms
- several physical phenomena on interfaces, interface motion
- **bubble expansion**, dynamics, coarsening, rupture
- other aspects (drainage, mould filling, geometry)
- difficulty for experimental measurements (foams are hot, opaque, etc.)

Bubble expansion by mass diffusion

step III- bubble expansion when AI is largely melted (T_M= melting temperature):

- H₂ gas is highly released
- H₂ dissolves in the aluminium and insoluble gas diffuse towards existing bubbles or nuclei, which causes them to inflate.

Bubble expansion by mass diffusion

step III- Physical model

- \bullet the 2D system (disk) is isothermal at $T_{\rm M},$ gravity is absent
- the melted Al is considered as an incompressible Newtonian liquid of constant viscosity
- at the boundary of the system the pressure is fixed at atmospheric pressure
- H₂ (ideal gas) is the only gas in the bubble; equilibrium concentration at the gas-liquid interface is given by the **Sievert's law**

• the thermodynamical equilibrium at the gas-liquid interface between the hydrogen partial pressure in the gas bubble and the dissolved hydrogen in liquid Al is expressed by the **Gibbs-Thomson equation (surface tension effects)**

expansion of a single H₂ bubble in a melt of aluminium

Bubble expansion by mass diffusion

(Atwood et al. 2000, Gibbs-Thompson equation)

presence of surface tension effects

Mathematical model in Comsol Multiphysics

Former equations coupled to (Chemical Reaction Engineering and CDF modules)

interface movement (phase field ϕ)

$$\mathbf{F}_{\rm st} = \left(G - \frac{\partial f}{\partial \phi} \right) \nabla \phi$$
 Surface tension force

and coupled to Global ODEs and DAEs User Interface to solve

$$\left(C_g - C_H^*\right) \frac{dR(t)}{dt} = D_H \left(\frac{\partial C_H}{\partial r}\right)_{r = R(t)}$$

Numerical results

values of the **diffusive flux magnitude of hydrogen** in the shell of aluminium melt ($C_{H,0} = 15x C_{H}^{*}$, $D_{H} = 10^{-3} m^{2}/s$)

13

Numerical results

position of the H₂ gas-liquid aluminium interface after t = 0.14 s (C _{H,0} = 15xC^{*}_H, D_H = 10⁻³ m²/s) plot of the gas bubble **time dependent radius** ($C_{H,0} = 15 \text{xC}_{H}^*$, $D_H = 10^{-3} \text{ m}^2/\text{s}$)

14

Numerical results

velocity field and **streamlines** in the H_2 bubble and aluminium shell after t = 0.14 s; position of the actual H_2 **gas-liquid aluminium interface** is also shown (contours)

pressure field in the H_2 bubble and aluminium shell after t = 0.14 s

Conclusions

• A computational model considering mass transfer phenomena coupled to the growth and motion of gas bubbles in the liquid metal has been proposed.

• Gas diffusion in the liquid has been simulated by applying the Fick's law, convective transport and including surface tension effects on the gas-liquid interface.

• The computations simulate satisfactorily mass transfer, bubble expansion, interface movement and fluid flow and show that the phase field method, for capturing the phase interface, can be effective.

• In this way other physical mechanisms of foaming could be included in a future more comprehensive model.