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• Bubble expansion by mass diffusion 

• Mathematical model in Comsol Multiphysics 
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Metal foams 

Uniform gas-liquid mixture (gas-metal or gas-alloy) in which the  

volume fraction of the liquid phase is small (10-20%: wet foam,  

<10% dry foam) 

 

D.J. Durian (UCLA): ...a random packing of bubbles... 
or ...a most unusual form of condensed 
matter... 

solidified metal foam 
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Al metal foam 

melted Al and 
H2  gas 
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Indirect foaming via precursor: precursor  

Precursor : compacted  Al (or Al alloy)  and foaming agent  

• mixing of a foaming agent powder (TiH2)  and 
the base metal powder (Al or Al alloy) 

• cold compacting the powder  

• extrusion of the pre-compacted billet in 
order to obtain a precursor material whose 
density is close to that of the base metal 
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2 cm 

grey areas : Al alloy  white areas : TiH2 foaming agent  

Images by X ray  computed μ-tomography  

H2 bubble 

Al (or Al alloy) 

solid precursor 

foamed precursor 



Foaming process 
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large foam expansion, Al is largely 
melted   (TM= melting temperature) 
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• 0: thermal expansion of the metal 

• I: bubble nucleation in solid metal/ TiH2 decomposes, H2 gas starts to be released 

• II: bubble  expansion (small) in the semi-solid range (T<TM)/ much H2 gas is released   

• III: bubble expansion in a metal, largely melted (T ≈ TM)/ H2 gas is highly released 

• IV: initial foam collapse (can be avoided by foam solidification) 

TM= 660 °C 

Al, liq. 

H2,gas 

X ray image of a foamed precursor  

 



Indirect foaming via precursor: physical phenomena  
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Foaming is a complex phenomena: 

 

• simultaneous mass, momentum and energy transfer mechanisms 

• several physical phenomena on interfaces, interface motion 

• bubble  expansion, dynamics, coarsening, rupture 

• other aspects (drainage, mould filling, geometry)  

• difficulty for experimental measurements (foams are hot, opaque, etc.) 
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Bubble expansion by mass diffusion 
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step III- bubble expansion when Al is largely melted    
(TM= melting temperature):     
 
•  H2 gas is highly released 
 
•  H2 dissolves in the aluminium and insoluble gas 
diffuse towards existing bubbles or nuclei, which 
causes them to inflate. 
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TM= 660 °C 

expansion of a single H2 bubble in a melt   
of aluminium 
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Bubble expansion by mass diffusion 
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step III- Physical model 
 
• the 2D system (disk) is isothermal at TM, gravity is absent 

 

• the melted Al  is considered as an incompressible 
Newtonian liquid of constant viscosity  
 
• at the boundary of the system the pressure is fixed at 
atmospheric pressure 
 
• H2 (ideal gas) is the only gas in the bubble; equilibrium 
concentration at the gas-liquid interface is given by the 
Sievert's law  
 
• the thermodynamical equilibrium at the gas-liquid 
interface between the hydrogen partial pressure in the 
gas bubble and the dissolved hydrogen in liquid Al  is 
expressed by the Gibbs-Thomson equation (surface 
tension effects)  
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expansion of a single H2 bubble in a melt   
of aluminium 
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Bubble expansion by mass diffusion 
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(Atwood et al. 2000, Gibbs-Thompson equation)  
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Mathematical model in Comsol Multiphysics  

10 01/11/2013 COMSOL CONFERENCE 2013,  ROTTERDAM 

Former equations coupled to (Chemical Reaction Engineering and CDF modules) 
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Numerical results 
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values of hydrogen concentration in the shell of 
aluminium melt (C H,0 = 15xC*

H, DH = 10-3 m2/s) 

values of the diffusive flux magnitude of 
hydrogen in the shell of aluminium melt (C H,0 = 
15x C*

H,     DH = 10-3 m2/s) 



Numerical results 
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position of the H2 gas-liquid aluminium interface 
after t = 0.14 s (C H,0 = 15xC*

H, DH = 10-3 m2/s) 
plot of the gas bubble time dependent radius  
(C H,0 = 15xC*

H, DH = 10-3 m2/s) 



Numerical results 
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velocity field and streamlines in the H2 bubble and 
aluminium shell after t =0.14 s; position of the actual H2 
gas-liquid aluminium interface is also shown  (contours ) 

pressure field in the H2 bubble and aluminium shell  
after t =0.14 s 



Conclusions 
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• A computational model considering mass transfer phenomena coupled to the growth and motion of 
gas bubbles in the liquid metal has been proposed.  
 
• Gas diffusion in the liquid has been simulated by applying the Fick's law, convective transport and 
including surface tension effects on the gas-liquid interface.  
 
• The computations simulate satisfactorily mass transfer, bubble expansion, interface movement and 
fluid flow and show that the phase field method, for capturing the phase interface, can be effective. 
 
• In this way other physical mechanisms of foaming could be included in a future more comprehensive 
model. 
 


