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HEAT SURFACE REGION GENERATED BY THERMOELASTIC 

 STRESSES 

LASER-ULTRASONICS: 

• noncontact, leading to increased speed of inspection; 

• non-destructive if the optical power is kept sufficiently small; 

• suitable for in situ measurements in an industrial setting; 

• couplant independent; 

• applicable on curved complex surfaces; 

• broadband systems. 

Ablation regime Thermoelastic regime 

Generating laser 

100 GW/m2 1 GW/m2 1000 GW/m2 

Introduction: Laser-Ultrasonics 
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Use of COMSOL Multiphysics 
 A 2D axisymmetric model has been performed simulating the half cross 

section of an aluminium disk of radius 10 mm and 3 mm thick.  

Two different physics have to be 

considered in Laser-Ultrasonics:  

 

 Thermo-elasticity for the 

ultrasonic wave generation due 

to the thermo-stress induced by 

the laser impulse. 

 Acoustics for the ultrasonic 

wave propagation within the 

material.  
Laser diameter (σR)  0.6 mm 

Laser energy 140 mJ  

Laser pulse duration 12 ns 
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Comsol - Physics used: 
 THERMAL STRESS 

 TRANSIENT ACUSTICS-SOLID 

INTERACTION 
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Use of COMSOL Multiphysics 
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𝜌𝐶𝑣
𝜕𝑇

𝜕𝑡
+ 𝜌𝐶𝑣𝒖1𝛻𝑇 = 𝛻 𝑘𝛻𝑇 + 𝑄 

BOUNDARY CONDITIONS 

 Heat flux on the top and bottom surface simulates convective cooling.  

 Other boundaries are assumed to be thermally insulated. 

 Heat source:  

𝑄 𝑟, 𝑧, 𝑡 = 𝑄𝑜𝑓 𝑟 𝑔 𝑡 𝛿 𝑧  

Thermal diffusion equation 

𝐓 Temperature raise 

𝐤 Thermal conduction coefficient 

𝛒 Density 

𝐂𝐯 Constant volume specific heat 

𝐐 𝐫, 𝐳, 𝐭   Power density of the heat source  

 Qo is the total absorbed heat; 

 f(r) is the radial distribution of the 

laser irradiance; 

 g(t) gives its temporal distribution;  

 δ(z) considers the effect of 

absorption.  

z 

r 
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Use of COMSOL Multiphysics 

5 

Time-dependence 

of the power 

thermal density 

Q(t) 

𝑸𝒊𝒏 𝒓, 𝒛, 𝒕 = 𝑸 𝒕 𝟏 −𝑹𝒄
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−
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 Skin depth 𝜹 = 𝝅𝝈𝝁𝒓𝝁𝟎𝝂
−𝟏 𝟐  

 Reflection 

coefficient 
𝑹𝒄 = 𝟏 − 𝟒

𝝁𝟎𝝈𝒄𝜹
 ≅ 𝟎. 𝟗 

 Absorption 

coefficient 
𝑨𝒄=𝟏

𝜹 ≅ 𝟐𝒙𝟏𝟎𝟖 𝟏/𝒎 

𝛔 Conductivity 4x107 ( m)-1 

𝛍𝐫 Relative permeability 1 

𝛍𝟎 
Permeability of free 

space 

4x107 Hm-1 

 

𝛎 
Frequency of the 

radiation 
2.8x1014 Hz 

Gaussian profile 
Effect of absorption 

z (m) 
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Use of COMSOL Multiphysics 
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 MESH 

A structured quadrilateral mesh with maximum dimension size of 1 µm was used. 

Distribution node configuration has been used in order to increase the number of 

element in the heat source region. 

 SOLVER 

The solver used is the time dependent-solver, with the generalized alpha method for 

computing the time step. Simulation time : 5 µs 

The acoustic model allows to connect the elastic wave propagation with the 

thermal deformation evaluated in the thermal stress module 

 BOUNDARY CONDITION 

Prescribed displacement (in r and z directions) 

has been set in order to impose the thermal 

displacement, output of the thermal stress module, 

as input of the acoustic one. 
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𝜌
𝜕2𝒖𝟐

𝜕𝑡2
− 𝛻𝒔 = 𝑭𝑣 NEWTON’S SECOND LAW: 

z 

r u2z(t)=u1z(t)  

u2r(t)=u1r(t) 

• u2: displacement vector.  

• s : stress tensor. 

• Fv: volume force vector. 



Laser demodulator 

OFV5000 

Computer 

Laser Doppler 

Vibrometer Pulsed Laser 

Nd-YAG 

Sample 

Q-switch 

Laser beam 

Nd-YAG laser 

λ (µm) E (mJ) 𝛕 (ns) 

1.06 140 12 

Laser Doppler Vibrometer 

Frequency bandwidth 

(MHz) 

Displacement 

resolution (pm) 

20 1 

Epicentric 

point 

 EXPERIMENTAL SET-UP 

 NUMERICAL MODEL 

7 

Quantitative comparison between 

displacement amplitude 

calculated numerically and 

measured experimentally 

z 

r 

Experimental set-up for model validation 
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 TEST SAMPLE REALIZED IN THE MODEL  

Longitudinal (P1) 

wave (t=0.2 s) 
P1 wave arrival at the 

epicentric face (t=0.49 s) 

Surface wave (t=1 s) 
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Wave 
Arrival 

time 
Speed 

Longitudinal (P1)  0.49 s  6153 m/s 

Transverse (T1) 0.98 s 3061 m/s 

Transverse wave 

(T1) 

3D- Elastic waves propagation 
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The Waterfalls represent the displacement in 

the z-direction on the epicentric surface 
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L 
T 

L 

T 

z 

r 

Numerical and Experimental B-Scan 

L: Longitudinal wave 

T: Transverse wave 

Epicentric 

point 

Epicentric 

surface 

Laser 

beam 
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NUMERICAL EXPERIMENTAL 



• The normalization has been performed taking into account the test object thickness 

(h) and the shear bulk wave speed (cS).  

• The dispersion curves have been obtained with a simulation time of 100 µs.  

• The spatial/frequency resolution of the analysis is not sufficient to separate the 

different Lamb waves components, but their distribution is clearly visible. 

Dispersion curves in the normalized 

wavenumber-frequency domain 
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L 

T 

Lamb waves 
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CONCLUSIONS 

 The model has been validated with  experimental data, showing a 

good correspondence both in terms of propagation mechanisms (P, 

T bulk waves) and ultrasonic wave amplitude.   

 In a future work the model will be exploited to perform a 

sensitivity analysis to the laser characteristic parameters (i.e. laser 

energy, diameter and pulse duration).  

 Once validated the model, these parameters can be set in advance 

in relation to the measurement conditions, testing object material 

and damage typologies (i.e. surface or in-depth defect, convex 

defect due to fatigue or concave defect due to fretting, defect 

dimension).  

The research is funded by Ministry of Instruction, Research and 

Education in a PRIN project. 
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