Singlet Oxygen Modeling of PDT incorporating Local Vascular Oxygen Diffusion

Timothy C. Zhu and Baochang Liu

Motivation – why?

PDT efficacy depends on three parameters: light, drug, and oxygen

Current state of art for human PDT trial:

- PDT dose, the product of drug concentration and light fluence, is quantified.
- The effect of light fluence rate is not accounted for.

 A macroscopic singlet oxygen model has been developed to calculate, [¹O₂]_{rx}, from the all three components. However, one parameter, the oxygen supply rate, g, is not estimated based on the actual blood vasculature.

Introduction

- Jablonski Diagram Type II PDT interaction
- Sensitizer (PS) + light + oxygen $({}^{3}O_{2}) \rightarrow$ singlet oxygen $({}^{1}O_{2})$

Formulation of the macroscopic problem

$\frac{d[S_0]}{dt} = -k_0[S_0] + k_1[^1O_2]([S_0] + \delta) + k_2[T][^3O_2] + k_3[S_1] + k_4[T]$		Definition	Values
		PS abs. rate at $\phi = 100$ mW/cm ²	18.8 1/s
$\frac{d[S_1]}{dt} = -(k_3 + k_5)[S_1] + k_0[S_0]$	<i>k</i> ₁	Photobleaching rate	$1.2 \times 10^5 \ 1/\mu M \cdot s$
ui 1[T]		Reaction rate of ${}^{3}O_{2}$	100 1/µM·s
$\frac{d[T]}{dt} = -\left(k_2[{}^{3}O_2] + k_4\right)[T] + k_5[S_1]$	<i>k</i> ₃	Rate of S_1 to S_0	$2.0 \times 10^{7} 1/s$
		Rate of T to S_0	1210 1/s
$d[{}^{3}O_{2}]$, $d = [\pi][{}^{3}O_{2}] + d = [{}^{3}O_{2}]$	k_5	Rate of S_1 to T	$8.0 imes 10^7 1/s$
$\frac{dt}{dt} = -S_{\Delta}k_{2}[I][^{*}O_{2}] + k_{6}[^{*}O_{2}] + g(I - \frac{1}{[^{3}O_{2}]_{0}})$		Rate of ${}^{1}O_{2}$ to ${}^{3}O_{2}$	$1 \times 10^{6} 1/s$
$\frac{d[^{1}O_{2}]}{k} = S_{\Delta}k_{2}[T][^{3}O_{2}] - (k_{1}[S_{0}] + \delta + k_{7}[A] + k_{6})[^{1}O_{2}]$	<i>k</i> ₇	Reaction rate of ${}^{1}O_{2}$ with tissue	$2.6\times 10^6 \; 1/\mu M{\cdot}s$
dt	S_{Δ}	Fraction $[^{1}O_{2}]$ from reaction $[T]$ and $[^{3}O_{2}]$	0.5
$\frac{d[A]}{d[A]} = -k_{\pi}[A] \begin{bmatrix} 1 \\ 0 \end{bmatrix}$	Е	Extinct. Coef.	$0.036 \text{ cm}^{-1}/\mu\text{M}$
dt dt	g	Max oxygen supply rate	0.7 µM/s
$\nabla (1/3\mu_s')\nabla \phi - \mu_a \phi = S$	$[S_0]_i$	PS concentration	17 μM (= 10mg/kg Photofrin <i>in-vivo</i>)
	$[{}^{3}O_{2}]_{i}$	Init. Con.	83 µM
	$[\mathbf{S}_1]_i$	Init. Con.	0 μΜ
Deference: Displatenies 2, 204,240, 2010	[A _{li}	Init. Con.	830 μM
Reference: J Biophotonics 3, 304-318, 2010	$[T]_i$	Init. Con.	0 μΜ
		Init. Con.	0 μ M

Macroscopic PDT model - current

$$\mu_a \phi - \nabla \cdot \left(\frac{1}{3\mu_s} \nabla \phi \right) = S$$

S: source term, Fluence rate: ϕ

$$\frac{d[S_0]}{dt} + \left(\frac{\delta}{\delta} \frac{\phi([S_0] + \delta)^3 O_2]}{[^3 O_2] + \beta}\right) [S_0] = 0$$

$$\frac{d[{}^{3}O_{2}]}{dt} + \left(\underbrace{\xi}_{[}^{3}O_{2}] + \beta \right) [{}^{3}O_{2}] - \underbrace{g}_{[}^{3}O_{2}] - \underbrace{[}^{3}O_{2}]_{[}^{3}$$

g is the maximum oxygen perfusion rate where there is no oxygen gradient

 $0 \frac{\beta = k4/k2}{\text{constant.}} \text{ constant.}$

 $\xi = S_{\Delta} k5/(k3+k5) \varepsilon/hv/(k6/k7[A]+1)$

 $\sigma = k1/(k7[A])$

 $[S_0](t)$, $[^3O_2](t)$, and $[^1O_2]_{rx}(t)$ Equs. are function of β , σ , ξ , and g, and initial conditions of $[^3O_2]$ and $[S_0]$.

 $\frac{d[{}^{1}O_{2}]_{rx}}{dt} - \left(\xi \frac{\phi[S_{0}][{}^{3}O_{2}]}{[{}^{3}O_{2}] + \beta}\right) = 0$

Incorporation of vascular blood diffusion

Cylinder vascular model tissue model:

- Capillary uniform distribution in tumor
- Linear light source: radial-dependent fluence rate--diffusion
- Krogh cylinder model: single capillary
 - > Oxygen, hemoglobin: diffusion and convection
 - Oxy-hemoglobin saturation
 - > Initial $[{}^{3}O_{2}]$: solution of steady state prior to PDT

Vascular model

• Krogh's Model - 3D cylindrical single blood vessel is modeled in 2D by taking advantage of cylindrical symmetry.

Equations describing vascular diffusion

Prior to PDT –Steady state solution

Ground - state Oxy gen in Tissue & capillary

$$\overbrace{\text{Capillary:}}^{\text{Tissue:}} \frac{d[{}^{3}\text{O}_{2}]}{dt} = D_{t}\nabla^{2}[{}^{3}\text{O}_{2}] - q_{0}\frac{[{}^{3}\text{O}_{2}]}{[{}^{3}\text{O}_{2}] + [{}^{3}\text{O}_{2}]_{m}}$$

$$\overbrace{\text{Capillary:}}^{\text{d}} \left\{ \frac{d[{}^{3}\text{O}_{2}]}{dt} = D_{c}\nabla^{2}[{}^{3}\text{O}_{2}] - \vec{v} \cdot \nabla[{}^{3}\text{O}_{2}] + \Gamma_{\text{rec}} \Rightarrow \text{Free oxy gen} \\ C_{\text{H}}\frac{dS}{dt} = C_{\text{H}}D_{\text{H}}\nabla^{2}S - \vec{v} \cdot C_{\text{H}}\nabla S - \Gamma_{\text{rec}} \Rightarrow \text{Bound oxy gen} \\ S : \text{oxy gen saturation}, S = \frac{[{}^{3}\text{O}_{2}]^{n}}{[{}^{3}\text{O}_{2}]^{n} + [{}^{3}\text{O}_{2}]_{50}^{n}}$$

During PDT -- Tissue

$$\frac{\mathrm{d}[{}^{3}\mathrm{O}_{2}]}{\mathrm{d}t} + \left(\xi \frac{\phi[\mathrm{S}_{0}][{}^{3}\mathrm{O}_{2}](1+\sigma([\mathrm{S}_{0}]+\delta))}{[{}^{3}\mathrm{O}_{2}]+\beta}\right) = \begin{cases} D_{t}\nabla^{2}[{}^{3}\mathrm{O}_{2}] - q_{0}\frac{[{}^{3}\mathrm{O}_{2}]}{[{}^{3}\mathrm{O}_{2}]+[{}^{3}\mathrm{O}_{2}]_{m}} \Rightarrow \mathrm{Microscopic}\\\\g\left(1-\frac{[{}^{3}\mathrm{O}_{2}]}{[{}^{3}\mathrm{O}_{2}]_{t=0}}\right) \Rightarrow \mathrm{Macroscopic}\end{cases}$$

PENN RADIATION ONCOLOGY

9

Vascular Parameters (Zhu, et al, SPIE 2007, Wang, et al J Biophoton, 2010)

Parameter	Description	Value
$\overline{R_c}$	Capillary radius	4~10 μm
R_t	Tissue radius	18~65 μm
z	Length of capillary	220 µm
u	Blood velocity in capillary	50~750 μm/s
C_{H}	Plasma oxygen carrying capacity	9000 μM
α_c	Oxygen solubility in plasma	1.527 μM/mmHg
α_t	Oxygen solubility in tissue	1.295 µM/mmHg
P_{50}	Half maximum hemoglobin saturation	26mmHg
P_m	Half maximum oxygen consumption	1mmHg
P_{ts}	Tumor supply pO_2	20~40 mmHg
n	Hill constant	2.7
D_c	Oxygen capillary diffusion coefficient	1120 µm2/s
D_t	Oxygen tissue diffusion coefficient	1700 µm2/s
\underline{q}_0	Oxygen consumption	2~16 μM/s

Parameter	Value	Definition	
ξ (cm²mW ⁻¹ s ⁻¹)	3.7 x 10 ⁻³	$\xi = S_{\Delta} k5 / (k3 + k5) \varepsilon / hv / (k6 / k7 [A] + 1)$	
σ (μM ⁻¹)	2.97 x 10 ⁻⁵	$\sigma = k1/(k7[A])$	
δ (μΜ)	33		
β (μΜ)	8.7	$\beta = k4/k2$	

$[^{3}O_{2}]/[^{3}O_{2}]_{0}$, independent of light fluence rate

g values vs. R_c and R_t (I_c = 220 μ m)

Rt \ Rc (μm)	2.5	4	10
18	12.6	23.2	146
30	6.24	10.2	41.4
60	2.53	4.23	11

12

g values vs. R_c, R_t, and I_c

$$g[\mu M/s] = \frac{59400R_c[\mu m](R_c[\mu m] + 0.573)}{l_c[\mu m](R_t[\mu m] - 4.2)^2}$$

g on mean oxygen concentration

PENN RADIATION ONCOLOGY

Penn Medicine 14

- Incorporation of vascular blood vessel provides a good validity of macroscopic model.
- An estimation of the blood perfusion value, g, is established based on the known parameters of vasculature in normal tissue.
- The calculated g based on microvascular is too high, additional mechanism needs to be identified to explain the results (blood flow reduction?, longer capilary?).

Thank you – any questions?

Grant support
 NIH R01 CA154562-01 and P01 CA87971

