

# University of the Year

Times Higher Education Awards 2009/10



COMSOL CONFERENCE BOSTON 2013









### Computational Fluid Dynamics for Microreactors Used in Catalytic Oxidation of Propane

by

**Sunday Odiba** 

**Director of study: Prof. Maria Olea** 

2<sup>nd</sup> Supervisor: Prof. S. Hodgson

3<sup>rd</sup> Supervisor: Dr. A. Adgar









#### Introduction

#### Aim:

Develop a versatile a suitable model for microreactor using COMSOL

#### Objective:

Investigate with CFD the cold flow behaviour;

Investigate flow and reaction analysis;

Optimize the reactor geometry and operation conditions;

Build the experimental reactor;

Run experiments;

Compare the results with the COMSOL ones.



#### COMSOL CONFERENCE BOSTON 2013





#### Manifold geometry



















#### Effect of inlet velocity on flow distribution within the microchannel













#### Effect of inlet velocity on flow distribution within the microchannel







#### COMSOL CONFERENCE BOSTON 2013





#### **Results & discussion**

#### Concentration gradient of propane over Au/Cr/γ-Al2O3 at inlet velocity of 0.01 m/s



$$C_3H_8 + 5O_2 => 3CO_2 + 4H_2O$$

$$r_{C_3H_8} = \frac{k_{O_2}k_{C_3H_8}P_{C_3H_8}P_{O_2}}{k_{O_2}P_{O_2} + 5k_{C_3H_8}P_{C_3H_8}}$$

$$k_{O_2} = 1.36 \times 10^{12} \exp\left(\frac{-18125}{T}\right)$$

$$k_{C_3H_8} = 1.16 \times 10^{10} \exp\left(\frac{-15104}{T}\right)$$

(Lin, Jiunn-Nan and Ben-Zu, Wan, 2004)









#### Propane concentration gradient along a channel at a velocity of 0.01m/s











#### Propane concentration gradient along a channel at a velocity of 0.05m/s











#### Propane concentration gradient along a channel at a velocity of 0.1m/s











#### Propane concentration gradient along a channel at a velocity of 1m/s











#### Propane exit conversion against temperature at velocity of 0.01, 0.05, 0.1, and 1 m/s











#### **Conclusions**

- ✓ Four microreactor geometries investigated;
- ✓ Flow distribution assessed based on Relative Standard Deviation;
- ✓ Type A2 gives the best flow distribution; flow behaviour from laminar to transitional;
- ✓ The simulated results have revealed that higher conversion rates of propane can be achieved by decreasing inlet gas velocity from 1 m/s to 0.01 m/s and increasing temperature from 593 K to 663 K.









#### **Further work**

- Build the experimental reactor;
- Carry out experiments using propane oxidation on Au/Cr/ $\gamma$  Al<sub>2</sub>O<sub>3</sub> and compare with the COMSOL simulated results to validate the model.









## THANK YOU FOR YOUR KIND ATTENTION