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Objectives

1. Formulate a numerical method that fulfills
two requirements, namely

i. The method solves for a harmonic func-
tion over an unbounded domain; and

ii. The only computational domains for
which the method requires meshing are
bounded; and

2. Test the computational results for agree-
ment with an analytic solution.



Kelvin inversion

Let a be a given length scale, let r denote posi-
tion relative to an origin, and let r = |r|. Con-
sider the change of position variable r ! q de-
fined by the rule r/r = q/q with rq = a2 and
q = |q|. Then a is the geometric mean of r and
q. If q < r then q < a < r.

If, in particular, r is a point exterior to the
sphere r = a then q is a point interior to that
sphere. Points r and q are Kelvin inverses of
one another. I will call the sphere r = a = q the
Reflecting Sphere.



Kelvin’s Inversion Theorem

Let (x1, x2, x3) and (q1, q2, q3) denote the
cartesian components of r and q, resp., rela-
tive to a common set of cartesian unit vectors
{̂ı1, ı̂2, ı̂3} and let �x :=

P3
j=1

@2

@xj@xj
and

�q :=
P3

j=1
@2

@qj@qj
. One may show that for any

suitably di↵erentiable function (x1, x2, x3) 7! �
and q 6= 0 we have �x� = (q/a)5�q[(a/q)�].
If, therefore, q 6= 0 and �x� = 0 then �q� = 0,
in which � := (a/q)�.



A boundary-value problem

Let as be the radius of a solid sphere. If the
sphere is submerged in a liquid initially at rest
and accelerated suddenly to the velocity Q then
the velocity field, r 7! v of the fluid satisfies
the equations rx •v = 0 (incompressibility of
the fluid) and v = rx� (irrotationality of the
motion). Then rx •rx� = �x� = 0. Suitable
boundary conditions are: (i) |v| = |rx�| ! 0 as
r ! 1; and (ii), (rx� • n̂)r=as = Q • n̂, in which
n̂ is the outward unit normal for the exterior of
the solid sphere.



Analytic solution of the
boundary-value problem

If (Q1, Q2, Q3) are the components of Q relative
to {̂ı1, ı̂2, ı̂3} one may orient the latter such that
Q • ı̂3 = Q3. According to a classical result the
function r 7! �d defined by

�d = �(1/2)(as/r)3Q3x3 ,

in which ( )d stands for for dipole, is an exact so-
lution of the foregoing boundary-value problem.
This solution will serve as the benchmark against
which to compare the numerical simulation.



Decomposition of the domain

Given as choose a such that a/as > 1. I will
call the regions with as < r < a and r > a the
Near Exterior and the Far Exterior, resp. Then
Kelvin inversion r 7! q takes points with posi-
tion r in the Far Exterior to points with position
q in the ball q < a, which I will call the Inverted
Far Exterior.

The idea is to solve �x� = 0 and �q� = 0
simultaneously for the functions r 7! � in the
Near Exterior and q 7! � in the Inverted Far
Exterior, resp.



Impermeable-wall condition and
the first compatibility condition

As stated earlier the impermeable-wall boundary
condition is (rx� • n̂)r=as = Q • n̂ on the inner
boundary of the Near Exterior.

Recall that q = a = r on the Reflecting
Sphere and recall the definition � := (a/q)�.
Therefore � = (q/a)�, which leads to the first
compatibility condition at the Reflecting Sphere,
namely

�r=a = �q=a .



The second compatibility condition

If one di↵erentiates � = (q/a)� with respect to q
one obtains @�/@q = (q/a)(@�/@q)+(1/a)�. But
@�/@q = (dr/dq)@�/@r and rq = a2, from which
one deduces that
�(a2/q2)(@�/@r) = (q/a)(@�/@q) + (1/a)� .

If one evaluates on the Reflecting Sphere and
rearranges one obtains

(@�/@q)q=a = �(@�/@r)r=a � (1/a)�q=a ,

which is the second compatibility condition at the
Reflecting Sphere.



Remarks on on the
COMSOL implementation, I

Consider cylinderical coordinates ($,', z) asso-
ciated with the cartesian coordinates (x1, x2, x3)
through x1 = $ cos', x2 = $ sin', x3 = z. A
classical result asserts that in the axisymmetric
case �x� = (1/$)($�$)$ +�zz, or, equivalently,
$�x� = ($�$)$ + ($�z)z. The aim is to solve
�x� = 0, so

($�$)$ + ($�z)z = 0 ,

which COMSOL recognizes as a classical PDE of
Poisson (not Laplace) type.



Remarks on on the
COMSOL implementation, II

To enable each of the two model branches to
read data from the other I introduced, in the lo-
cal Definitions list of each model, a Model Cou-
pling Operator of General Extrusion type (at the
boundary level) for use on the Reflecting Sphere.



Fig. 1 Computed velocity potential, �, in
the Near Exterior with a/as = 1.5 and de-
fault mesh in both models. The range for � is

(�0.5, 0.5)m2/s.



Fig. 2 Discrepancy, �� := � � �analytic,
between COMSOL and analytical calcula-
tion in the Near Exterior.The range of �� is

(�2.63, 2.99)⇥ 10�3 m2/s.



Fig. 3 Velocity potential, �, in the Inverted Far
Exterior by COMSOL. The linear dependence

upon z accords with the analytic solution.



Conclusions

C1. Kelvin’s Inversion Theorem enables re-
placement of one flow in an unbounded
domain by two flows, each of which is in a
bounded domain;

C2. COMSOL enables simultaneous solution in
the two bounded domains.
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ssées à M. Liouville par M. William Thom-
son. Journal de Mathématique Pures et Ap-
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