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OBJECTIVES

1. Formulate a numerical method that fulfills
two requirements, namely

i. The method solves for a harmonic func-
tion over an unbounded domain; and
ii. The only computational domains for
which the method requires meshing are
bounded; and
2. Test the computational results for agree-
ment with an analytic solution.



KELVIN INVERSION

Let a be a given length scale, let r denote posi-
tion relative to an origin, and let » = |r|. Con-
sider the change of position variable r — q de-
fined by the rule r/r = q/q with r¢ = a* and

q = |q|. Then a is the geometric mean of r and
qg. It g<rtheng<a<r.

If, in particular, r is a point exterior to the
sphere r = a then q is a point interior to that
sphere. Points r and q are Kelvin inverses of
one another. I will call the sphere »r = a = ¢ the
Reflecting Sphere.



KELVIN’S INVERSION THEOREM

Let (x1,z2,x3) and (g1, g2, g3) denote the
cartesian components of r and q, resp., rela-
tive to a common set of cartesian unit vectors

{il,ig,ig} and let Am = 23 o and

j:1 33’13'8333'

Ay = 2321 aq?gqj' One may show that for any

suitably differentiable function (z,z2,23) — ¢
and ¢ # 0 we have A,¢ = (q/a)°A[(a/q)q].
If, therefore, ¢ # 0 and Ay¢ = 0 then A,® = 0,
in which ® := (a/q)¢.




A BOUNDARY-VALUE PROBLEM

Let as be the radius of a solid sphere. If the
sphere is submerged in a liquid initially at rest
and accelerated suddenly to the velocity Q then
the velocity field, r +— v of the fluid satisfies
the equations V, v = 0 (incompressibility of
the fluid) and v = V¢ (irrotationality of the
motion). Then V,«V,¢ = A,¢ = 0. Suitable
boundary conditions are: (i) |v| = |V.¢| — 0 as
r — oo; and (ii), (Vgpen),—,. = Qe1i, in which
n is the outward unit normal for the exterior of
the solid sphere.




ANALYTIC SOLUTION OF THE
BOUNDARY-VALUE PROBLEM

If (Q1,Q2,Q3) are the components of Q relative
to {11,12,13} one may orient the latter such that
Q13 = (3. According to a classical result the
function r — ¢4 defined by

da = —(1/2)(as /1)’ Q33 |

in which ( )4 stands for for dipole, is an exact so-
lution of the foregoing boundary-value problem.
This solution will serve as the benchmark against
which to compare the numerical simulation.



DECOMPOSITION OF THE DOMAIN

Given as choose a such that a/as > 1. I will
call the regions with ay; < r < a and » > a the
Near Exterior and the Far Exterior, resp. Then
KELVIN inversion r — q takes points with posi-
tion r in the Far Exterior to points with position
q in the ball ¢ < a, which I will call the Inverted
Far Exterior.

The idea is to solve Az = 0 and A;P =0
simultaneously for the functions r — ¢ in the
Near Exterior and q — & in the Inverted Far
Exterior, resp.



IMPERMEABLE-WALL CONDITION AND
THE FIRST COMPATIBILITY CONDITION

As stated earlier the impermeable-wall boundary
condition is (V ¢ en),.—,. = Qe on the inner
boundary of the Near Exterior.

Recall that ¢ = a = r on the Reflecting
Sphere and recall the definition ® := (a/q)¢.
Therefore ¢ = (q/a)®, which leads to the first
compatibility condition at the Reflecting Sphere,
namely

qsr:a, — (I)q:a .



THE SECOND COMPATIBILITY CONDITION

If one differentiates ¢ = (q/a)® with respect to q
one obtains 0¢/9q = (q/a)(0®/0q) + (1/a)®. But
0¢/0q = (dr/dq)0¢/Or and rq = a*, from which
one deduces that

—(a/q*)(9¢/0r) = (q/a)(02/0q) + (1/a)® .

If one evaluates on the Reflecting Sphere and
rearranges one obtains

(09/0q)q=a = —(0¢/0T)r=0 — (1/a)Py=a ,
which is the second compatibility condition at the
Reflecting Sphere.



REMARKS ON ON THE
COMSOL IMPLEMENTATION, I

Consider cylinderical coordinates (o, ¢, 2) asso-
ciated with the cartesian coordinates (x1,x2, x3)
through 1 = wcosp, o = wsiny, r3 = 2. A
classical result asserts that in the axisymmetric
case A, ¢ = (1/w)(@Wdw)w + .2, Or, equivalently,
WAL = (Whw)w + (W, ).. The aim is to solve
Ao =0, so

(w¢w)w =+ (w¢z)z =0 9
which COMSOL recognizes as a classical PDE of
P0OI1SSON (not LAPLACE) type.




REMARKS ON ON THE
COMSOL IMPLEMENTATION, 11

To enable each of the two model branches to
read data from the other I introduced, in the lo-
cal Definitions list of each model, a Model Cou-
pling Operator of General Extrusion type (at the
boundary level) for use on the Reflecting Sphere.



Fig. 1 Computed velocity potential, ¢, in
the Near Exterior with a/as = 1.5 and de-
fault mesh in both models. The range for ¢ is

(—0.5,0.5) m?2/s.



Fig. 2 Discrepancy, A¢ = ¢ — ¢analyticv
between COMSOL and analytical calcula-
tion in the Near Exterior.The range of A¢ is

(—2.63,2.99) x 1073 m?/s.



Fig. 3 Velocity potential, ®, in the Inverted Far
Exterior by COMSOL. The linear dependence
upon z accords with the analytic solution.



CONCLUSIONS

C1l. KELVIN’s Inversion Theorem enables re-
placement of one flow in an unbounded
domain by two flows, each of which is in a
bounded domain;

C2. COMSOL enables simultaneous solution in
the two bounded domains.
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