

Application of Kelvin's Inversion Theorem to the Solution of Laplace's Equation over a Domain that Includes the Unbounded Exterior of a Sphere

JOHN M. RUSSELL, Professor Emeritus Florida Inst. of Technology, Melbourne, Florida COMSOL Conference, Boston, October 2013

OBJECTIVES

- 1. **Formulate** a numerical method that fulfills two requirements, namely
 - i. The method solves for a harmonic function over an unbounded domain; and
 - ii. The only computational domains for which the method requires meshing are bounded; and
- 2. **Test** the computational results for agreement with an analytic solution.

KELVIN INVERSION

Let a be a given length scale, let \mathbf{r} denote position relative to an origin, and let $r = |\mathbf{r}|$. Consider the change of position variable $\mathbf{r} \to \mathbf{q}$ defined by the rule $\mathbf{r}/r = \mathbf{q}/q$ with $rq = a^2$ and $q = |\mathbf{q}|$. Then a is the geometric mean of r and q. If q < r then q < a < r.

If, in particular, \mathbf{r} is a point exterior to the sphere r=a then \mathbf{q} is a point interior to that sphere. Points \mathbf{r} and \mathbf{q} are *Kelvin inverses* of one another. I will call the sphere r=a=q the *Reflecting Sphere*.

Kelvin's Inversion Theorem

Let (x_1, x_2, x_3) and (q_1, q_2, q_3) denote the cartesian components of \mathbf{r} and \mathbf{q} , resp., relative to a common set of cartesian unit vectors $\{\hat{\mathbf{i}}_1, \hat{\mathbf{i}}_2, \hat{\mathbf{i}}_3\}$ and let $\Delta_x := \sum_{j=1}^3 \frac{\partial^2}{\partial x_j \partial x_j}$ and $\Delta_q := \sum_{i=1}^3 \frac{\partial^2}{\partial a_i \partial a_i}$. One may show that for any suitably differentiable function $(x_1, x_2, x_3) \mapsto \phi$ and $q \neq 0$ we have $\Delta_x \phi = (q/a)^5 \Delta_q [(a/q)\phi]$. If, therefore, $q \neq 0$ and $\Delta_x \phi = 0$ then $\Delta_a \Phi = 0$, in which $\Phi := (a/q)\phi$.

A BOUNDARY-VALUE PROBLEM

Let a_s be the radius of a solid sphere. If the sphere is submerged in a liquid initially at rest and accelerated suddenly to the velocity **Q** then the velocity field, $\mathbf{r} \mapsto \mathbf{v}$ of the fluid satisfies the equations $\nabla_x \cdot \mathbf{v} = 0$ (incompressibility of the fluid) and $\mathbf{v} = \nabla_x \phi$ (irrotationality of the motion). Then $\nabla_x \cdot \nabla_x \phi = \Delta_x \phi = 0$. Suitable boundary conditions are: (i) $|\mathbf{v}| = |\nabla_x \phi| \to 0$ as $r \to \infty$; and (ii), $(\nabla_x \phi \cdot \hat{\mathbf{n}})_{r=a_s} = \mathbf{Q} \cdot \hat{\mathbf{n}}$, in which **n** is the outward unit normal for the exterior of the solid sphere.

ANALYTIC SOLUTION OF THE BOUNDARY-VALUE PROBLEM

If (Q_1, Q_2, Q_3) are the components of \mathbf{Q} relative to $\{\hat{\mathbf{i}}_1, \hat{\mathbf{i}}_2, \hat{\mathbf{i}}_3\}$ one may orient the latter such that $\mathbf{Q} \cdot \hat{\mathbf{i}}_3 = Q_3$. According to a classical result the function $\mathbf{r} \mapsto \phi_d$ defined by

$$\phi_d = -(1/2)(a_s/r)^3 Q_3 x_3 ,$$

in which ()_d stands for for *dipole*, is an exact solution of the foregoing boundary-value problem. This solution will serve as the benchmark against which to compare the numerical simulation.

DECOMPOSITION OF THE DOMAIN

Given a_s choose a such that $a/a_s > 1$. I will call the regions with $a_s < r < a$ and r > a the Near Exterior and the Far Exterior, resp. Then Kelvin inversion $\mathbf{r} \mapsto \mathbf{q}$ takes points with position \mathbf{r} in the Far Exterior to points with position \mathbf{q} in the ball q < a, which I will call the Inverted Far Exterior.

The idea is to solve $\Delta_x \phi = 0$ and $\Delta_q \Phi = 0$ simultaneously for the functions $\mathbf{r} \mapsto \phi$ in the Near Exterior and $\mathbf{q} \mapsto \Phi$ in the Inverted Far Exterior, resp.

IMPERMEABLE-WALL CONDITION AND THE FIRST COMPATIBILITY CONDITION

As stated earlier the impermeable-wall boundary condition is $(\nabla_x \phi \cdot \hat{\mathbf{n}})_{r=a_s} = \mathbf{Q} \cdot \hat{\mathbf{n}}$ on the inner boundary of the Near Exterior.

Recall that q = a = r on the Reflecting Sphere and recall the definition $\Phi := (a/q)\phi$. Therefore $\phi = (q/a)\Phi$, which leads to the *first* compatibility condition at the Reflecting Sphere, namely

$$\phi_{r=a} = \Phi_{q=a} .$$

THE SECOND COMPATIBILITY CONDITION

If one differentiates $\phi = (q/a)\Phi$ with respect to q one obtains $\partial \phi/\partial q = (q/a)(\partial \Phi/\partial q) + (1/a)\Phi$. But $\partial \phi/\partial q = (dr/dq)\partial \phi/\partial r$ and $rq = a^2$, from which one deduces that

$$-(a^2/q^2)(\partial\phi/\partial r) = (q/a)(\partial\Phi/\partial q) + (1/a)\Phi.$$

If one evaluates on the Reflecting Sphere and rearranges one obtains

$$(\partial \Phi/\partial q)_{q=a} = -(\partial \phi/\partial r)_{r=a} - (1/a)\Phi_{q=a} ,$$

which is the *second compatibility condition* at the Reflecting Sphere.

REMARKS ON ON THE COMSOL IMPLEMENTATION, I

Consider cylinderical coordinates (ϖ, φ, z) associated with the cartesian coordinates (x_1, x_2, x_3) through $x_1 = \varpi \cos \varphi$, $x_2 = \varpi \sin \varphi$, $x_3 = z$. A classical result asserts that in the axisymmetric case $\Delta_x \phi = (1/\varpi)(\varpi \phi_\varpi)_\varpi + \phi_{zz}$, or, equivalently, $\varpi \Delta_x \phi = (\varpi \phi_\varpi)_\varpi + (\varpi \phi_z)_z$. The aim is to solve $\Delta_x \phi = 0$, so

$$(\varpi\phi_{\varpi})_{\varpi} + (\varpi\phi_z)_z = 0 ,$$

which COMSOL recognizes as a classical PDE of Poisson (not Laplace) type.

REMARKS ON ON THE COMSOL IMPLEMENTATION, II

To enable each of the two model branches to read data from the other I introduced, in the local Definitions list of each model, a Model Coupling Operator of General Extrusion type (at the boundary level) for use on the Reflecting Sphere.

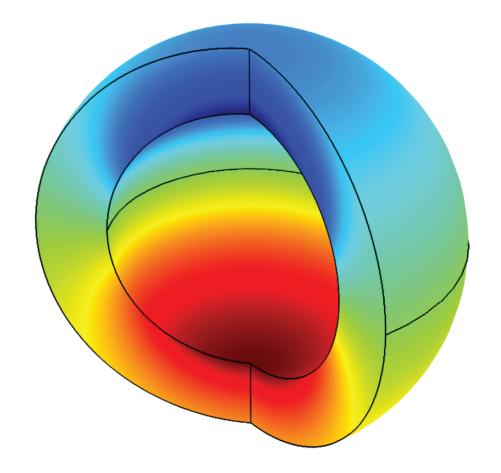


Fig. 1 Computed velocity potential, ϕ , in the Near Exterior with $a/a_s=1.5$ and default mesh in both models. The range for ϕ is $(-0.5, 0.5) \,\mathrm{m}^2/\mathrm{s}$.

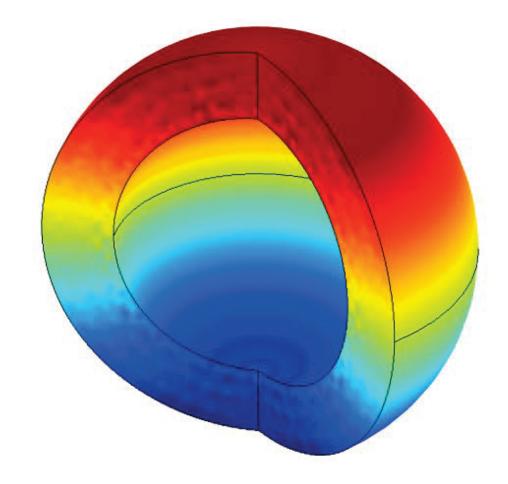


Fig. 2 Discrepancy, $\Delta \phi := \phi - \phi_{\rm analytic}$, between COMSOL and analytical calculation in the Near Exterior. The range of $\Delta \phi$ is $(-2.63, 2.99) \times 10^{-3} \, {\rm m}^2/{\rm s}$.

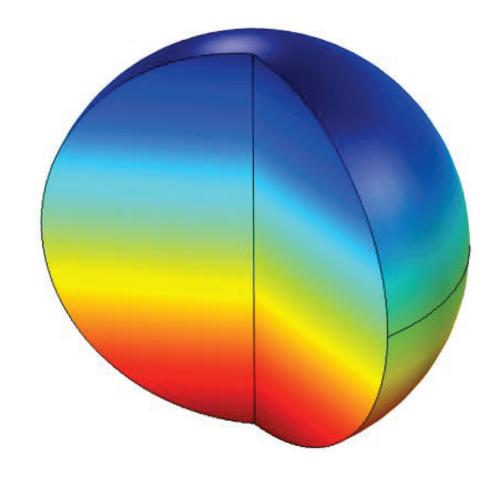


Fig. 3 Velocity potential, Φ , in the Inverted Far Exterior by COMSOL. The linear dependence upon z accords with the analytic solution.

Conclusions

- C1. Kelvin's Inversion Theorem enables replacement of one flow in an unbounded domain by two flows, each of which is in a bounded domain;
- C2. COMSOL enables simultaneous solution in the two bounded domains.

REFERENCES

- 1. Kelvin, Lord Extrait d'une lettre de M. William Thomson à M. Liouville. *Journal de Mathématique Pures et Appliquées*, **10** (1845).
- 2. Kelvin, Lord Extrait de deux lettres adressées à M. Liouville par M. William Thomson. Journal de Mathématique Pures et Appliquées, 12 (1847).