Long-term Effects of Ground Source Heat Pumps on Underground Temperature Xianglei Zheng #### **GSHPs** <u>www.pnmeng.com</u> <u>solarsogood.biz</u> Ryozo OOKA et al. #### Underground temperature - The upper 5~10 meters of the ground is affected mostly by atmosphere and solar energy. - The temperature below the depth of 10m often keeps constant through out the year, and there is a gradient between the temperature and the depth. #### Material properties and boundary conditions | Material | Soil (solid) | Boundary conditions | | | | | | |-------------------------|---------------|----------------------------|--------------------------------|--|--|--|--| | Dimensions | R100m*D200m | Upper boundary | Sinusoidal temperature | | | | | | Soil Density | 2000 kg/m^3 | | $Ts=A*sin(2\pi t/\tau)+Ta$ | | | | | | Heat Capacity | 1480 J/(kg*K) | Lower boundary | Constant heat flux 0.075 W/m^2 | | | | | | Thermal
Conductivity | 2.35W/(m*K) | Initial temperature | 284.15 K | | | | | | Time duration | 200 years | Thermal gradient | 0.029 K/m | | | | | • Computational domain and thermal loads #### Isothermal lines of ground at the end of the 100th year Underground temperature changes at the selected points at the end of 5th, 10th, 50th, and 100th year under different heat compensations | Distance to pile of (m) | Distance to pile center (m) | | | 1 | | | 11 | | | 21 | | | | |-------------------------|-----------------------------|---------------------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------| | Temperature Change (°C) | | At the end of years | | | | | | | | | | | | | Depth (m) | | 5 a | 10 a | 50 a | 100 a | 5 a | 10 a | 50 a | 100 a | 5 a | 10 a | 50 a | 100 a | | No
compensation | -10 | -1.84 | -4.06 | -4.12 | -4.14 | -0.67 | -0.85 | -0.98 | -1.54 | -0.25 | -0.40 | -0.44 | -0.46 | | | -15 | -1.71 | -4.03 | -4.13 | -4.17 | -0.47 | -0.77 | -0.79 | -1.11 | 0.01 | -0.24 | -0.31 | -0.36 | | | -25 | -1.03 | -2.47 | -2.63 | -2.70 | -0.30 | -0.54 | -0.61 | -0.77 | 0.03 | -0.16 | -0.28 | -0.35 | | | -40 | -0.10 | -0.18 | -0.36 | -0.42 | -0.05 | -0.12 | -0.27 | -0.36 | 0.00 | -0.04 | -0.18 | -0.24 | | | -60 | 0.00 | -0.01 | -0.16 | -0.16 | 0.00 | -0.01 | -0.10 | -0.14 | 0.00 | 0.00 | -0.09 | -0.13 | | Half
compensation | -10 | -0.58 | -0.22 | -1.47 | -0.85 | -0.34 | -0.25 | -0.70 | -0.33 | -0.13 | 0.00 | -0.48 | -0.20 | | | -15 | -0.42 | -0.12 | -1.42 | -0.86 | -0.15 | -0.10 | -0.62 | -0.35 | 0.09 | 0.20 | -0.37 | -0.12 | | | -25 | -0.27 | -0.18 | -0.90 | -0.66 | -0.09 | -0.13 | -0.41 | -0.34 | 0.08 | 0.08 | -0.23 | -0.15 | | | -40 | -0.04 | -0.07 | -0.14 | -0.18 | -0.02 | -0.03 | -0.11 | -0.13 | 0.01 | 0.02 | -0.06 | -0.08 | | | -60 | 0.00 | 0.00 | -0.02 | -0.04 | 0.00 | 0.00 | -0.01 | -0.04 | 0.00 | 0.00 | 0.00 | -0.03 | | Full
compensation | -10 | 1.46 | 1.60 | 1.33 | 1.62 | 0.02 | -0.22 | -0.20 | -0.25 | 0.02 | -0.25 | -0.22 | -0.28 | | | -15 | 1.64 | 1.84 | 1.47 | 1.87 | 0.21 | 0.04 | -0.05 | 0.01 | 0.22 | 0.01 | -0.07 | -0.02 | | | -25 | 0.93 | 1.11 | 0.81 | 1.11 | 0.12 | 0.09 | -0.05 | 0.06 | 0.14 | 0.08 | -0.06 | 0.04 | | | -40 | 0.01 | 0.05 | -0.04 | 0.06 | 0.02 | 0.05 | -0.04 | 0.06 | 0.03 | 0.05 | -0.04 | 0.06 | | | -60 | 0.00 | 0.01 | -0.01 | 0.04 | 0.00 | 0.01 | -0.01 | 0.04 | 0.00 | 0.01 | -0.01 | 0.04 | #### Summary - Heat compensation to the ground is important for the longterm performance of the GSHP system. - With full heat compensation, the underground temperature did NOT decrease. The underground temperature decreased if heat extracted from the ground without heat injection. - When there was no compensation, the underground temperature decreased in the beginning few years, then decreased very slightly. - The region that temperature changes relates to material properties and thermal loads. - Porous medium with groundwater movement model and double-piles model are suggested in further research #### Questions? # Thanks