

Modeling Scattering from Rough Poroelastic Surfaces Using COMSOL Multiphysics

Anthony Bonomo, Marcia Isakson, and Nicholas Chotiros Email: abonomo@arlut.utexas.edu

Work supported by Office of Naval Research, Ocean Acoustics

Outline

- Motivation
- Problem
- Implementation
- Scattering Strength Calculation
- Results
- Conclusions

Motivation

- Acoustic scattering from seafloor important source of interference with sonar systems.
- Necessary to accurately model physics of how sound interacts with the sea bottom.
 - Roughness effects
 - Physics of sediment (poroelasticity)

Problem

Reproduced from Yang et al., IEEE Ocean Eng., 27(3), 2002.

Implementation: Geometry

Implementation: Physics

- Physics assignment
 - Fluid domain modeled with Pressure Acoustics,
 Frequency Domain Interface.
 - Poroelastic domain modeled with Poroelastic
 Waves Interface.
- Boundary conditions
 - Continuity of normal stress
 - Continuity of pressure

Porous, Pressure Node

AccelerationNode

Normal

Continuity of normal displacement ——

Implementation: Physics

- Modified Gaussian tapered plane wave used to guard against edge effects.
 - See Thorsos, J. Acoust. Soc. Am., 83(1), 1988.
 - Implemented as Background Pressure Field.

 Far-Field Calculation node used to find far-field scattered pressure.

Implementation: Mesh

- Rule of thumb: at least 6 elements per smallest wavelength supported by domain.
 - Poroelastic: minimum of slow/shear wavelength.
- Computationally demanding due to disparity between compressional and slow/shear speed.
- Slow and shear waves have high attenuation.
 - Sufficient to mesh finely on interface and based on compressional wave elsewhere.

Scattering Strength Calculation

- Many models with unique rough surface realizations run to obtain ensemble average of far-field scattered pressure.
- Average intensity used to calculate scattering cross section.

$$\sigma(\theta, \theta_s) = \frac{\langle I_s \rangle r \sin \theta}{E_f}$$

• Scattering strength: $10\log_{10}\sigma(\theta,\theta_s)$

Thorsos, J. Acoust. Soc. Am., 83(1), 1988.

Numerical Results

- COMSOL calculations compared with more conventional scattering formulations.
 - Perturbation theory
 - Kirchhoff approximation
 - Small-slope approximation
- Monostatic and bistatic results shown for least and most rough cases studied.

Numerical Results

Roughness Parameters

Parameter	Values
Frequency (f)	100 Hz and 3 kHz
rms surface height (h)	0.1 and 1 m
Surface cutoff length (l)	10 m
Bistatic grazing angle (θ)	45 degrees

Material Properties

Parameter	Values
Fluid sound speed (c_f)	1530 m/s
Fluid density (ρ_f)	1023 kg/m ³
Fluid compressibility (χ_f)	4.176×10 ⁻¹⁰ Pa ⁻¹
Fluid viscosity (μ_f)	10 ⁻³ Pa·s
Drained density (ρ_d)	1404.5 kg/m ³
Drained bulk modulus (K)	43.6 + i2.08 MPa
Drained shear modulus (G)	29.2 + i3.86 MPa
Biot-Willis coefficient (α_B)	$0.998-i8.15\times10^{-5}$
Permeability (κ_p)	$3 \times 10^{-11} \mathrm{m}^2$
Tortuosity (τ)	1.2
Porosity (ϵ_p)	0.38
Reference frequency (f_c)	410.4 Hz

Taken from Yang et al., IEEE Ocean Eng., 27(3), 2002.

Results: Monostatic

Results: Bistatic

Conclusions

- Scattering from rough poroelastic surface successfully modeled using COMSOL Multiphysics.
- COMSOL Multiphysics robust tool for evaluating conventional scattering models.
- Good agreement between FEM and smallslope approximation.
- FEM monostatic results at shallow grazing angles warrant further study.