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Abstract: COMSOL Multiphysics is used to 
address the problem of acoustic scattering from 
one-dimensional rough poroelastic surfaces. The 
poroelastic sediment is modeled following the 
Biot-Stoll formulation. The rough surfaces are 
generated using a modified power law spectrum. 
Both monostatic and bistatic scattering strengths 
are calculated. These results are compared with 
more conventional scattering models such as 
perturbation theory and the small-slope 
approximation. The finite element method is 
found to be a useful way to assess the validity of 
these scattering models.  
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1. Introduction 

 
Acoustic scattering from the seafloor can be 

a significant source of noise in sonar systems 
especially in shallow water [1]. For this reason, 
accurate models that describe both the physics of 
the sediment and the interaction of acoustic 
waves with the bottom are necessary. Seafloor 
roughness is of particular significance, as it can 
be a dominant contributor to sound scattering at 
higher acoustic frequencies. 

The acoustic behavior of sediments has been 
studied extensively. The earliest models assumed 
sediments behaved like fluids. Since sediments 
generally can support shear stresses, the 
assumptions made when using fluid models are 
tenuous at best and have been replaced with 
more robust models, such as those that model the 
sediment as an elastic or viscoelastic material 
[1]. However, it has recently been shown that the 
best fit with experimental reflection data occurs 
when the sediment is assumed to behave as a 
poroelastic medium [2]. The theory of sound 
propagation in poroelastic media was first 
introduced by Biot in a series of classic papers 
[3]–[10]. This formulation was extended by Stoll 
and Kan and applied to the problem of wave 
reflection from a flat fluid-porous interface [11]. 

Much work has also been done toward 
quantifying the effects of surface roughness on 
the pressure field scattered from the seafloor. 
Scattering problems are typically studied using 
theoretical models that make various 
assumptions in approximating the Helmholtz-
Kirchhoff integral. The three most common of 
these methods are the small-roughness 
perturbation approximation, the Kirchhoff 
approximation, and the small-slope 
approximation [1]. Recently, the small-
roughness perturbation approximation and the 
small-slope approximation have been extended 
to scattering from rough poroelastic surfaces 
[12]-[13].  

This work seeks to study the acoustic 
scattering from one-dimensional rough 
poroelastic surfaces using the finite element 
method. The monostatic and bistatic scattering 
strengths are calculated using COMSOL 
Multiphysics and compared with the values 
obtained using existing approximation methods.      

 
2. Problem Description 

 
2.1 Physical Domain 

 
The problem being addressed involves a 

plane wave obliquely incident on a rough 
interface separating two semi-infinite half-
spaces, as shown in Figure 1.  

 

 
Figure 1. Geometry of scattering problem, as 

reproduced from [13]. 



 

The upper half-space consists of a fluid while 
the lower half-space is assumed to be a 
poroelastic medium. It is assumed that the lower 
medium is composed of two components: a solid 
elastic frame and an interstitial fluid. It is also 
assumed that the fluid of the upper medium is 
the same fluid as the interstitial fluid of the lower 
medium [13]. 

As shown in Figure 1, scattered and 
transmitted waves result when the incident plane 
wave impinges on the rough interface. The 
transmitted energy is distributed into three 
different waves—two compressional waves 
(denoted as the “fast” and “slow” waves) and a 
shear wave [11].  
 
2.2 Equations of Motion 

 
In the frequency domain, the equation 

governing the fluid half-space is the familiar 
Helmholtz equation with sound speed and 
density assumed to be constant, as shown below: 

 
!! + !! !! = 0,     (1) 

 
where ! is the wavenumber and !!!is the 
acoustic pressure.  

A pair of coupled equations as developed by 
Biot describe the motion of the lower half-space. 
Again, if time-harmonic dependency is assumed, 
they are given as follows [9]: 

 
−!!"!!! + !!!!! − ! ∙ !! = 0   (2) 
−!!!!! − !!!! ! ! + !!! = 0,   (3) 
 

where ! is the displacement of the solid frame, ! 
is the total stress tensor, ! is the fluid 
displacement with respect to the frame, !! is the 
fluid density, and !! is the fluid pore pressure. 
The complex density !!(!) is given by 
  

 

!!!!!!!!!! ! = ! !!!
!! +

!!
!"#, 

 
where ! is the tortuosity, !! is the porosity, !! is 
the fluid viscosity including Biot’s high 
frequency correction, and ! is permeability. The 
average density !!" = !!" + !!!!, where !!" is 
the drained density.  

For numerical calculations and ease of 
coupling with acoustic domains, it is often 

convenient to recast Eq. (2) and (3) in terms of 
the frame displacement ! and the pore fluid 
pressure !! [14]. Eq. (2) and (3) can thus be 
rewritten as follows [15]: 

 

−!! !!" −
!!!

!! !
! − ! ∙ ! = !!

!! !
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 − !!
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where ! is the Biot modulus, !! is the Biot-
Willis coefficient, and !!"# is the volumetric 
strain. 
 
2.3 Coupling Conditions 

 
Assuming free flow across the interface, the 

conditions needed to couple an acoustic (fluid) 
domain to a poroelastic domain are given by the 
following equations [16]: 

  
!! = −!!!      (6a) 
 ! ∙ ! +! ∙ ! = !

!!!!
!!!
!"    (6b) 

 !! = !! .     (6c) 
 
Equation (6a) ensures continuity of normal 
stresses. Equation (6b) enforces continuity of 
normal displacement. Equation (6c) invokes 
pressure continuity.  

 
2.4 Rough Surface Characteristics 

 
Random rough surfaces, like those found on 

the ocean bottom, are usually described 
statistically in terms of their deviation from a 
smooth reference surface [17]. One commonly 
used model assumes the seafloor roughness has a 
normalized spectral density, !(!), described by 
a simple power law, where ! is the spatial 
wavenumber [1]. While power law models have 
been found to agree closely with experimentally 
measured seafloor roughness in many cases, the 
fact that the power-law spectral form behaves 
pathologically when the spatial wavenumber 
approaches zero or infinity limits its utility. To 
address this issue, a modified power law 
spectrum is used in this work and is given by the 
following: 

 
 ! ! = !

!!!!!! !,     (7) 



 

 
where ! = 2ℎ!! !. Here ℎ is the rms surface 
height of the surface and ! controls the spectral 
cutoff length [13]. It can easily be shown that the 
power spectrum described by Eq. (7) is 
equivalent to the more conventional von Karman 
power spectrum described in [1] and elsewhere. 

   
3. Modeling Considerations 
 
3.1 Model Geometry 

 
Figure 2 depicts the problem geometry for a 

given rough surface realization as modeled in 
COMSOL. As shown, the rough surface 
separates a fluid domain from a domain assumed 
to consist of a poroelastic material. Both 
domains have height 2!! (as defined from the 
mean-plane of the rough interface), where !! is 
the acoustic wavelength. The length of the 
computational domain requires further 
consideration and is discussed in Section 3.3. 

 

 
Figure 2. Model geometry. 

 
In order to enforce the Sommerfeld radiation 

condition, perfectly matched layers (PMLs) are 
placed surrounding the entire computational 
domain. Rational coordinate stretching is 
selected for all PMLs. For PMLs adjacent to the 
acoustic domain, the expected wavelength is set 
to that of the compressional wave while for 
PMLs adjacent to the poroelastic domain, the 
expected wavelength is set to that of the so-
called “fast” wave. All PMLs have thickness !!. 

 Each COMSOL model contains a rough 
surface realization generated following the 
procedure outlined in [18]. In short, for a given 
length ! consisting of ! points with spacing !", 
realizations following the chosen surface 

roughness spectral density are generated at 
points !! = !"#!(! = 1,… ,!) using the 
following expression: 

 
 ! !! = !

! ! !!! !!!
!!!! ! !!!!!! ,    (8) 

 
where, for ! ≥ 0, 
 

! !! = 2!"# !!
!
!

! !,! !!" !,!
√! ,!!! ≠ 0, !!

! 0,1 , ! = 0, !!
, 

 
for ! < 0!, ! !! = ! !!!

∗
, and where ! 0,1  

indicates an independent sample taken from a 
zero mean, unit variance Gaussian distribution 
and  !! = 2!"/!. Eq. (8) is implemented in 
MATLAB and, through LiveLink, the generated 
realization is used to create a rough surface in 
COMSOL by drawing and connecting a series of 
Bezier polygons. In general, twenty-five such 
COMSOL models with distinct rough surface 
realizations are created for any given parameter 
set. 
 
3.2 Implementation of Required Physics 

 
The two domains shown in Figure 2 are 

modeled using separate physics interfaces within 
COMSOL. The fluid domain is modeled using 
the Pressure Acoustics, Frequency Domain 
Interface and the entire domain and associated 
PMLs are defined as a Pressure Acoustics 
Model. Similarly, the poroelastic domain and 
associated PMLs are modeled using the 
Poroelastic Waves Interface and defined as a 
Poroelastic Material. 

In order for the created COMSOL models to 
be physically accurate, the fluid and poroelastic 
domains must be coupled using the conditions 
described by Eq. (6). The continuity of normal 
stresses and the continuity of pressure are both 
enforced through a Porous, Pressure node in the 
Poroelastic Waves Interface. This node is 
assigned to the rough interface, and the pressure 
!! is set to the total acoustic pressure acting on 
the interface. A Normal Acceleration node in the 
Pressure Acoustics, Frequency Domain Interface 
is used to ensure continuity of normal 
displacements on the interface. Within the 
Normal Acceleration node, Inward Acceleration 
is selected as the type and !! is set to 



 

–!!(!!!! + !!!!), where !! and !! are the x- 
and z-components of the frame displacement 
field and !! and !! are the x- and z-components 
of the normal vector (pointing out from the 
poroelastic domain and into the fluid domain). 

Two more node assignments are needed in 
the Pressure Acoustics, Frequency Domain 
Interface to complete the model. A Far-Field 
Calculation node is assigned to the rough 
interface since the far-field scattered pressure is 
needed to calculate the scattering strength (see 
Section 3.5). Finally, a Background Pressure 
Field node is assigned to the fluid domain 
(excluding PMLs) and a custom background 
pressure field is prescribed, as described in the 
next section.      
 
3.3 Incident Wave 

 
When modeling infinite domains, it is 

important to minimize scattering from the ends 
of surface realizations. This goal is accomplished 
by tapering incident plane waves such that they 
are of negligible strength when they reach the 
edge PMLs. For this work, a modified Gaussian 
taper function is applied to create an incident 
wave of the following form [18]: 

 
!! ! = exp !!! ⋅ ![1 + ! ! ] − !!! !"#! !

!! ,      (9) 
 
where 
 

 ! ! = ! !!! !"#! ! !!!!
!" !"#! !  , 

 
!! is the incident wave vector, ! is the position 
vector, ! is the mean grazing angle, ! is the acoustic 
wavenumber, and ! is a parameter that controls the 
beam waist. 

For this work, a value of ! = ! 4 is used. In 
order to ensure that the modified Gaussian tapered 
plane wave accurately approximates a solution to 
the Helmholtz equation governing the fluid domain, 
the length of the computational domain must be 
chosen such that it obeys the Kapp criterion [19]: 

 
! ≥ !! !

!" !"#!,               (10) 
 
where a value of ! = 6.64 is used in this work. In 
practice, the computational domain length is chosen 

such that!! = max !! !
!" !"#! , 80!! . The incident 

wave is implemented in COMSOL by setting the 
user defined background pressure field !! equal to 
!! !  from Eq. (9).            
 
3.4 Mesh Criteria 

 
When attempting to resolve wave motion 

using quadratic shape functions, a good rule of 
thumb is to have elements be of uniform spacing 
and sized no larger than ! 6, where ! is the 
wavelength corresponding to the slowest wave in 
the medium. However, such a rule can lead to 
excessive computational cost for domains 
consisting of poroelastic materials, since the 
slow and shear waves can often be more than an 
order of magnitude less than the fast wave. Since 
both the slow and shear waves are quite lossy, a 
mesh that becomes gradually coarser as it gets 
further from the rough interface is sufficient for 
scattering calculations as long as the maximum 
element size does not exceed one-sixth of the 
fast wave’s wavelength. It should be noted that 
for scattering from very rough surfaces, the rule 
of thumb stated above may be inadequate and a 
boundary layer may need to be implemented on 
the rough interface to properly resolve all 
components of the scattered pressure field.   
 
3.5 Calculation of Scattering Strength 

 
After a set of COMSOL models are run and 

the scattered pressure fields are solved for a 
given parameter set, the scattering cross section 
is calculated by using the following expression 
[18]: 

 
!! !, !! = !! ! ! !

! !! !!!.! !!! !"#! ! !" !"#! ! , (11) 

 
where !! is the scattered angle and !!  denotes 
ensemble averaging over all realizations. The 
scattering strength is then simply calculated as 
follows: 
 

!! = 10 log !!(!, !!) .   (12) 
 

To calculate the monostatic scattering strengths, 
the scattered angle !! is set equal to the grazing 
angle ! and ! is swept from 0 to !!. The bistatic 
scattering strengths are calculated by fixing ! 
and sweeping !! from 0 to !.  
 



 

 
4. Results 

 
Using the above procedure, monostatic and 

bistatic scattering strengths were calculated for a 
variety of parameter sets and compared with the 
results of more conventional scattering models. 
Both the surface roughness parameters and 
material properties considered were taken from 
[13] for ease of comparison with the perturbation 
theory and small-slope approximation results 
published by Yang et al. The calculated values 
were also compared with the Kirchhoff 
approximation calculated using both the Monte 
Carlo and formally averaged methods based on 
the discussion from [18] and [20]. Tables 1 and 2 
show the material properties utilized and the 
parametric cases considered. As mentioned 
above, twenty-five surface realizations were 
generated for each parameter set and the 
calculated scattered pressure fields were formally 
averaged to obtain the scattering strengths. 
Results from two cases are presented in the 
sections below. 

 
Table 1: Material properties. 

 
Parameter Values 
Fluid sound speed  (!!) 1530 m/s 
Fluid density  (!!) 1023 kg/m3 

Fluid compressibility  (!!) 4.176×10-10 Pa-1 
Fluid viscosity  (!!) 10-3 Pa∙s 
Drained density  (!!) 1404.5 kg/m3 

Drained bulk modulus  (!) 43.6 + i2.08 MPa 
Drained shear modulus  (!) 29.2 + i3.86 MPa 
Biot-Willis coefficient  (!!) 0.998–i8.15×10-5 

Permeability  (!!) 3×10-11 m2 

Tortuosity  (!) 1.2 
Porosity  (!!) 0.38 
Reference frequency  (!!) 410.4 Hz 

 
Table 2: Parameters studied. 

 
Parameter Values 
Frequency (!) 100 Hz and 3 kHz 
rms surface height  (ℎ) 0.1 and 1 m 
Surface cutoff length  (!) 10 m 
Bistatic grazing angle  (!) 45 degrees 

 
 
 

 
4.1 Monostatic Results 

 
Figures 3 and 4 show the results for 

monostatic scattering strength. Figure 3 
corresponds to the case of lowest surface 
roughness relative to the acoustic wavelength. It 
is clear from the figure that all scattering models 
show excellent agreement for this case. Note the 
deviation of the finite element model and 
Kirchhoff Monte Carlo results from the other 
scattering models at normal incidence. This 
disparity occurs because only the finite element 
and Kirchhoff Monte Carlo models account for 
the coherent effects in the specular direction, 
which corresponds to normal incidence when 
considering monostatic scattering. 

 

 
 

Figure 3. Monostatic scattering strengths for  
! = 100 Hz, ℎ = 0.1 m, and ! = 10 m. 

 
Figure 4 corresponds to the case of highest 

surface roughness relative to the acoustic 
wavelength. All the scattering models show 
relatively good agreement for this case except for 
perturbation theory, which deviates significantly 
as the grazing angle approaches normal 
incidence. Also of note is the disparity between 
the finite element and small-slope approximation 
results for shallow grazing angles; the small-
slope approximation is generally thought to 
perform best for cases like this one so this 
disparity warrants further study.     



 

 
 

Figure 4. Monostatic scattering strengths for 
! = 3 kHz, ℎ = 1 m, and ! = 10 m. 

 
4.2 Bistatic Results 

 
Figures 5 and 6 show the results for bistatic 

scattering strength corresponding to a grazing 
angle of 45 degrees. Again, Figure 5 shows the 
case of lowest relative surface roughness. Like 
for the monostatic case, all scattering models 
shown have excellent agreement. The peak at 45 
degrees shown by the finite element and 
Kirchhoff Monte Carlo results again represents 
the coherent specular contribution to the 
scattering, a feature not considered by the other 
models.  
 

 
 

Figure 5. Bistatic scattering strengths for 
! = 10 Hz, ℎ = 0.1 m, ! = 10 m, and ! = 45o. 

 
Like Figure 4, Figure 6 corresponds to the 

case of highest relative surface roughness. Here 
the finite element and small-slope approximation 
results agree very closely, while perturbation 
theory differs greatly at specular and both 

Kirchhoff methods deviate away from specular, 
as expected. 

 

 
 

Figure 6. Bistatic scattering strengths for 
! = 3 kHz, ℎ = 1 m, ! = 10 m, and ! = 45o. 

 
5. Conclusions and Future Work 

 
The work presented here shows that 

COMSOL Multiphysics provides a robust way to 
solve scattering problems involving rough 
poroelastic surfaces and evaluate the efficacy of 
more conventional scattering models. In general, 
the finite element results agree very closely with 
those of the small-slope approximation. A small 
deviation was noted for the monostatic scattering 
at shallow grazing angles that should be 
investigated further. In the future, this work 
should be extended to scattering from two-
dimensional surfaces and comparisons should be 
made between results from full poroelastic 
formulations and Biot-equivalent effective 
density fluid models, such as the one included in 
the Pressure Acoustics, Frequency Domain 
Interface. 
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