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Abstract

Ultrasound as an advanced oxidation process (AOP) has been shown to effectively destruct
organic and inorganic contaminants in aqueous solution [1]. In the sonicated solution, collapse of
cavitation bubbles generates localized "hot spots" where temperature and pressure are as high as
5,000 K and 1,000 atm, respectively [2]. In this extreme condition, thermolysis and OH oxidation
are two mechanisms for the contaminant degradation [1, 2]. Although ultrasound technology
shows great potential in the AOP, the commonly-used ultrasound irradiator (e.g., horn type)
generates a localized cavitation and a non-uniform cavitation field, which makes it difficult to
scale-up the AOP with the typical horn irradiator [3]. Therefore, a novel configuration design of
an ultrasound irradiator is necessary to maximize the cavitation-induced chemical effects for
large-scale AOP.

When expecting efficiency and economics in the design of a large-scale system for AOP,
computational simulation seems more attractive if it provides compatible results to real
measurements. The computational simulation can easily investigate different reactor geometries,
irradiator configurations, and ultrasound frequencies to optimize the design. COMSOL
Multiphysics® has been applied to simulate acoustic field and sonochemistry in reactors [4,5,6].
The characterization of a design becomes much simpler and straightforward with the aid of
computational simulation.

In this study, COMSOL was used to characterize an ultrasound irradiator design, in which there
were a transducer, an ultrasound irradiator (20 kHz, 2.6 — 3.8 cmin diameter, and 28.0 cmin
length), and a water tank (with dimensions of 61.0 cmx 61.0 cm x 45.0 cmand a volume of
167.5 L) involving different physical phenomena. The piezoelectric material in the transducer
converts electrical energy to mechanical vibration, which then passes through the ultrasound
irradiator and is intensified at the end of the irradiator. Then the irradiator emits the amplified
mechanical waves (ultrasound waves) in water, and those waves propagate in the water tank
radially.

The simulation was established as a 2D axisymmetric geometry. The physics "acoustic-
piezoelectric interaction" was selected in a frequency domain study. "Pressure acoustics",
"piezoelectric material", and "linear elastic material models" were correspondingly set for water,



transducer, and ultrasound irradiator domains. Boundary conditions for surfaces in contact with air
were setto "free", whereas surfaces in contact with water were defined as acoustic-structure
boundaries. In addition, "cylindrical wave radiation" was chosen for the acoustics boundary
condition because the ultrasound irradiator has cylindrical pieces with different diameters. "Free
triangular” was selected with appropriate maximum element size to mesh each domain.

The simulated acoustic pressure field surrounding the designed ultrasound irradiator is consistent
to experimental measurements [7], shown in Figure 1 (2D) and Figure 2 (3D). The computed
results have showed that the ultrasound irradiator design with a serial-stepped configuration
improved cavitation effects as compared to typical horn irradiators generating a localized
cavitation. COMSOL seems to be a reliable and convenient tool for such scale-up designs of
ultrasound irradiators for AOP.
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Figure 1 Simulated Results of Acoustic Pressure Distribution in 2D
{units for axis and color bar are mm and Pa, respectively)

Figure 1: Simulated Results of Acoustic Pressure Distribution in 2D (units for axis and color bar
are mm and Pa, respectively).
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Figure 2 Simulated Results of Acoustic Pressure Distribution in 3D

{units for axis and color bar are mm and Pa, respectively)

Figure 2: Simulated Results of Acoustic Pressure Distribution in 3D (units for axis and color bar
are mm and Pa, respectively).



