

Government of India Department of Atomic Energy Indira Gandhi Centre for Atomic Research

Thermal Analysis of Induction Furnace

OVERVIEW

Introduction

Numerical model

Validation

Main features of the model

Geometry & Meshing

Governing equations and Boundary Conditions

Numerical results

Conclusions

NUMERICAL RESULTS

CONCLUSIONS

INDUCTION FURNACE

It is a high temperature vacuum distillation furnace used for recovery of heavy metals

Functions :

- melt and consolidate of heavy metals
- distill the volatile metals and salts
- operate in inert containment box
- heat reasonably fast while being capable of holding temperature

Induction heating Vacuum operation

NUMERICAL

CONCLUSIONS

• MOCK UP INDUCTION FURNACE

--simulates conditions to be realized in actual furnace

-to demonstrate the melting of 10 kg copper

THERMAL ANALYSIS OF INDUCTION FURNACE

NUMERICAL MODEL

NUMERICAL RESULTS

CONCLUSIONS

FOR VALIDATION

THERMAL ANALYSIS OF INDUCTION FURNACE

GEOMETRY 2D axi- symmetric model of the mock-up cathode processor created in COMSOL MESHING

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

Electromagnetic field - Maxwell's equations

$$(j\omega\sigma - \omega^{2}\epsilon_{0}\epsilon_{r})A + \nabla \times (\mu_{0}^{-1}\mu_{r}^{-1}B) = J_{e}$$
$$B = \nabla \times A$$

- These equations are solved in copper charge, coil, crucible, susceptor, insulation, alumina, and air domains.
- The input data for the coil is 400 A external current with a working frequency of 8 kHz.
- In the outer boundaries of computational domain the magnetic insulation boundary condition is used, which imposes that the normal component of magnetic field has to be zero

GOVERNING EQUATIONS AND BOUNDARY CONDITIONS

NUMERICAL

MODEL

NUMERICAL

Thermal field – Fourier equation

$$\rho c \frac{\partial T}{\partial t} = \nabla \cdot (k \nabla T) + Q$$

- Solid computational domains of the model,
- All the initial temperatures are set to 30°c.
- All the inside free surfaces in the model are allowed to participate in surface to surface radiation.
- The outer vessel wall surfaces are allowed to participate in surface to ambient radiation and convective cooling using suitable values of *h*.

CONCLUSIONS

NUMERICAL MODEL

CONCLUSIONS

Temperature rise with time at the indicated points on the susceptor and crucible respectively.

- Transient Thermal analysis of mock-up induction furnace is being carried out in this study which is highly important for operation and control of the process.
- Preliminary model : it will aid in improving the design.

NUMERICAL

MODEL

- The results of this study have shown that the temperature of the crucible rises to 1500 °C in 2 hours of heating time at frequency of 8 kHz and current of 400 A.
 copper is likely to melt under these conditions.
- The studies reveal that copper-liner is effective in reducing the electromagnetic coupling between the coil and the vessel and thus prevents vessel from getting heated up by this effect.
- The coil temperatures are above the acceptable temperature of copper material, hence different cooling technique is to be adopted.
- These results will be compared with the experimental results which will be obtained during the operation of mock up facility.

FURTHER STUDY

IMPORTANCE

Thermal Analysis of Induction Furnace

Thanks for your attention

Thermal Analysis of Induction Furnace

MOCK UP INDUCTION FURNACE

S. No	Parameter	Value
1	Frequency	8 kHz
2	Current	400 A
3	Height of copper in	30 mm
	the crucible	(for 3.5 kg)
4	Time of heating	7200 s (2 hours)
5	Time step for	60 s
	computation	

Thermal Analysis of Induction Furnace

• FOR VALIDATION

Parameter	Value
Total Voltage	77 V
Electrical Power	13 – 15 kW
Frequency	10 KHz
Time of Heating	25 s
Time step for Computation	0.1s

NUMERICAL MODEL

MESHING

- Physics controlled
- Triangular elements
- Extremely fine
- ■34580 elemets

NUMERICAL

RESULTS

CONCLUSIONS