Thermal Analysis of Induction Furnace A. A. Bhat^{*1}, S. Agarwal¹, D. Sujish¹, B. Muralidharan¹, B.P. Reddy², G.Padmakumar¹ and K.K.Rajan¹ ¹Fast Reactor Technology Group, ²Chemistry Group Indira Gandhi Centre for Atomic Research, Kalpakkam-603102, India asifbhat@igcar.gov.in

ABSTRACT

Induction heating furnaces are employed for vacuum distillation process to recover and consolidate heavy metals after electrorefining operation. Induction heating furnaces of suitable heating rates are required to be developed for this purpose. Hence it is planned to set up a mock-up induction furnace which will simulate the conditions to be realized in actual induction heated vacuum distillation furnace. The mock-up induction furnace will be used to demonstrate the melting of copper. Preliminary results of the mock-up furnace are aimed at understanding the induction heating process and control which will be useful for the design and operation of actual vacuum distillation furnace. The mock-up induction furnace has been modeled in COMSOL Multiphysics. Prior to that the Induction Heating Interface algorithm under the Heat Transfer Module of COMSOL Multiphysics was validated with the experimental data reported in the literature. This paper describes the thermal and electromagnetic modeling of induction furnace and discusses the numerical results obtained. These results will be compared with the experimental results which will be obtained during the operation of mock-up facility.

NTRODUCTION

The mock-up induction furnace consists of furnace liner (susceptor), crucible, induction coil, copper-liner, graphite felt insulation and alumina refractory. These furnace components are enclosed in stainless steel vacuum vessel. Figure 1 shows the schematic layout of the equipment. Induction heating is achieved by supplying AC power at 2-8 kHz to the coil..The furnace liner essentially gets coupled with the magnetic field generated by the induction coil, heats up and indirectly heats the crucible by radiation heat transfer. The melting of copper takes place in crucible. The copper liner prevents the coupling of stainless steel vessel with magnetic flux lines. The carbon felt insulation is used to prevent the heat loss to the coil and other parts. The melting is carried out under vacuum and the contents in the crucible need to be heated to 1500 °C in 2-5 hours. These conditions are sufficient for melting process. After melting, the crucible is cooled to form the metal ingot which is then removed. The induction coil is not water cooled due to safety considerations. The coil is only cooled by radiation to the walls of vacuum vessel which can be cooled by water. The 2D axisymmetric COMSOL model of the furnace is used to study the induction heating in the mock-up furnace.

Fig.1: 3D and 2D schematic models of mock-up induction furnace

MODELING IN COMSOL

SALIENT FEATURES IN MODELING

COMSOL-2012

The induction heating process in mock-up furnace is a complex process where different physical fields i.e., electromagnetic and heat transfer phenomena are strongly coupled due to inter-related nature of physical properties (Figure 2). A simplified 2D axisymmetric model shown in Figure 3 was built in COMSOL. The model has the same dimensions as that of the mock- up induction furnace. The crucible has the diameter of 265 mm and that the coil inner diameter is about 400mm. The important parameters used in the model are given in Table 1. Figure 4 gives the he geometry and mesh networks of the validation model created using COMSOL.

	S. No	Parameter	Value	
ELECTROMAGNETISM	1	Frequency	8 kHz	
Faraday's properties	2	Current	400 A	
law dependent on magnetic	3	Height of copper in the	30 mm (for 3	
Joule field and temperature		crucible	kg)	
	4	Time of heating	7200 s (2 hours	
HEAT TRANSFER				
	5	Time step for	60 s	
		computation		
Fig. 2: Coupling of				
different fields in induction heating.	Table in sir	Table 1: Important parameters us in simulation.		

The Maxwell's equations are solved in entire computational domain. In the outer boundaries of domain the magnetic insulation boundary condition is used, which imposes that the normal component of magnetic field has to be zero. The heat conduction equation is solved in solid computational domains of the model. All the initial temperatures are set to 30°C. All the inside free surfaces in the model are allowed to participate in surface to surface radiation. The outer vessel wall surfaces are allowed to participate in surface to ambient radiation and Fig.3: 2D axisymmetric convective cooling using suitable values of heat transfer model of mock-up coefficients for top bottom and vertical surfaces.

induction furnace.

4:The 2D axisymmetric model (with mesh) OŤ validation model .

RESULTS