

SIMULATION AND OPTIMIZATION OF MEMS PIEZOELECTRIC ENERGY HARVESTER WITH A NON-TRADITIONAL GEOMETRY

S. Sunithamani¹, P. Lakshmi¹, E. Eba Flora¹

Department of EEE, College of Engineering, Anna University, Chennai, India.

Contents

- Introduction
- Theory
- Use of COMSOL
 - Geometry.
 - Mesh.
 - Piezoelectric Equations.
 - Sub domain settings.
 - Boundary conditions.
 - -Modelling and Optimization.
- Results
- Summary

Introduction

- The energy harvesting devices converts ambient energy into electrical energy.
- It is the concept by which energy is captured, stored and utilised.
- Ambient energy is available in the form of vibration, light, temperature gradient etc.
- Among these energy, mechanical vibration is the most widespread and wasted energy in the environment.

Theory

- Conversion of Mechanical vibration into electrical energy
 - -Electromagnetic
 - -Electrostatic
 - -Piezoelectric.
- Piezoelectric generators are mostly used because piezoelectric materials have the advantage of large power and ease of application.
- Direct piezoelectric effect: surface charge induced by a mechanical stress.
- The most studied energy harvesters are based on the piezoelectric effect and are made with MEMS technology.
- The geometry of piezoelectric cantilever beam greatly affects its vibration energy harvesting ability.
- In this paper MEMS based energy harvester with a non-traditional geometry is designed and simulated with COMSOL for the conversion of mechanical into electrical energy.
- Also the results are compared with other geometries such as rectangular and triangular.

Use of COMSOL

Geometry

The geometry consists of two subdomains,
1.substrate layer- stainless steel.

2. piezoelectric layer- active layer of unimorph.

Figure 1. Structure of piezoelectric energy harvester with non-traditional geometry. L=27000 μ m, L₀=2000 μ m, L₁=18000 μ m, L₂=7000 μ m, W=3000 μ m, W₀=W₁=1000 μ m, T₀=200 μ m, T₁=210 μ m.

Meshing and Governing Equations

Meshing

•The mesh consists of 238 quad elements for a total number of degrees of freedom 10639.

Figure 2. Piezoelectric Energy Harvester mesh.

Piezoelectric Equations

$$S = s^{E} T + d E$$

$$D = \varepsilon^{T} E + d T$$
(1)

Where

S - the mechanical strain vector s^E -elastic compliance tensor (Pa⁻¹)

T- mechanical stress vector (Nm⁻²)

D -elastic displacement vector (Cm⁻²)

 ε^{T} -the dielectric permittivity tensor (Fm⁻¹)

E- the electric field vector (Vm⁻¹)

d- the transverse piezoelectric coefficient tensor (CN^{-1}) .

For the **substrate layer** only mechanical behaviour is considered using stress-strain relationship.

$$S = sT \tag{2}$$

s is the compliance of stainless steel substrate.

Subdomain settings

- The material parameters of the substrate are as follows: its density ρ =7850 kg/m³, Young's modulus E=200 x 10⁹ Pa, Poisson's ratio μ =0.33.
- The active layer of unimorph is modelled using the following set of properties.

-Elastic compliance tensor $\begin{bmatrix} 50 & -20 & -20 & 0 & 0 \end{bmatrix}$

$$\mathbf{S}^{E} = \begin{bmatrix} 50 & -20 & -20 & 0 & 0 & 0 \\ -20 & 50 & -20 & 0 & 0 & 0 \\ -20 & -20 & 50 & 0 & 0 & 0 \\ 0 & 0 & 0 & 70 & 0 & 0 \\ 0 & 0 & 0 & 0 & 70 & 0 \\ 0 & 0 & 0 & 0 & 0 & 70 \end{bmatrix} \mathbf{x} \ 10^{-12} \, \mathbf{Pa}^{-1}$$

-Piezoelectric tensor

$$d = \begin{bmatrix} \begin{smallmatrix} 0 & 0 & 0 & 0 & 11 & 0 \\ 0 & 0 & 0 & 11 & 0 & 0 \\ -2.5 & -2.5 & 5 & 0 & 0 & 0 \end{bmatrix} \times 10^{-12} \text{ CN}^{-1}$$

-Relative permittivity matrix

$$\varepsilon^{T} = \begin{bmatrix} 50 & 0 & 0 \\ 0 & 50 & 0 \\ 0 & 0 & 50 \end{bmatrix} x \ \varepsilon^{0}$$

-Density $\rho = 3000 \text{ kg m}^{-3}$

Boundary conditions

• Vertical acceleration :

- body load F_Z = ap in each subdomain, a =0.1g and p is the density of the material.
- One end of the unimorph cantilever is fixed while other is free for vibration.
 - -fixed constraint condition is applied for the vertical faces of both the layers.
 - -while all other faces are free of displacement.

• Electrostatic boundary conditions :

- -upper and lower face of PZT layer are selected as floating and ground potentials respectively .
- -while all other faces of piezoelectric layer are kept as zero charge.

Mesh boundary conditions:

- -to optimize the thickness of the PZT layer, Moving mesh application mode is used.
- bottom face: clamped,
- vertical faces: clamped along thickness,
- -upper surface: tangentially constrained and displaced in the normal direction to the surface by a given displacement (deltathickness).
- -deltaThickness is changed from 10μm to 400μm obtaining parameterized moving mesh.

Modelling and Optimization

Figure 3 FEM modelling of rectangular, triangular and non-traditional geometries.

Figure 4 Tip displacement (nm) Vs Thickness(μm).

Results-output voltage

Figure 5 voltage (mV) Vs thickness (μ m) and charge (e-13) Vs thickness (μ m).

Results-Stored energy

Stored electrical energy

$$E = \frac{1}{2}QV$$

Figure 6 Stored electrical energy (fJ) Vs thickness (μm).

Results-Frequency analysis

Figure 7 Voltage (V) Vs Frequency (Hz) for three different geometries.

Results-Strain analysis

LENGTH ALONG X DIRECTION (µm)

Figure 8 Strain curves of three different geometries along X direction.

Performance comparison

a)Strain.

b) Deformation.

Summary

- A piezoelectric energy harvester with non-traditional geometry was designed and simulated in COMSOL Multiphysics.
- The thickness of PZT layer was optimized to give maximum stored electrical energy.
- Frequency analysis and strain analysis were carried out for the optimized thickness of 210µm.
- Simulation results demonstrate that the piezoelectric energy harvester with non-traditional geometry improves strain and generate more voltage at resonant frequency than the rectangular and triangular piezoelectric energy harvester.
- The simulation results suggest that such structures can be used for energy generation in wireless sensor networks.

References

- [1] Z.S.Chen, Y.M.Yang and G.Q.Deng, "Analytical and Experimental Study on Vibration Energy Harvesting Behaviors of Piezoelectric Cantilevers with Different Geometries" International conference on sustainable power generation and supply, 1 6 (2009).
- [2] M.Guizzetti, V.Ferrari, D.Marioli and T.Zawada, "Thickness optimization of a piezoelectric converter for energy harvesting," *Proceedings of the COMSOL Conference*, 2009.
- [3] Suyog N Jagtap and Roy Paily, "Geometry Optimization of a MEMS-based Energy Harvesting Device" Proceeding of the 2011 IEEE Students' Technology Symposium, 265 269 (2011), IIT Kharagpur.

Thank You!

Questions???