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Introduction 
• The energy harvesting devices converts ambient energy 

into electrical energy . 

• It is the concept by which energy is captured, stored 
and utilised.  

• Ambient energy is available in the form of vibration, 
light, temperature gradient etc. 

•  Among these energy, mechanical vibration is the most 
widespread and wasted energy in the environment. 
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Theory 
• Conversion of Mechanical vibration into electrical energy  

  -Electromagnetic 

  -Electrostatic  

  -Piezoelectric.  

• Piezoelectric generators are mostly used because piezoelectric materials 
have the advantage of large power and ease of application. 

• Direct piezoelectric effect: surface charge induced by a mechanical stress. 

• The most studied energy harvesters are based on the piezoelectric effect 
and are made with MEMS technology.  

• The geometry of piezoelectric cantilever beam greatly affects its vibration 
energy harvesting ability . 

• In this paper MEMS based energy harvester with a non-traditional 
geometry is designed and simulated with COMSOL for the conversion of 
mechanical into electrical energy. 

• Also the results are compared with other geometries such as rectangular 
and triangular. 

 



Use of COMSOL 

Figure 1. Structure of piezoelectric energy harvester 

with non-traditional geometry. L=27000µm, 

L0=2000µm, L1=18000µm, L2=7000µm, 

W=3000µm, W0=W1=1000µm, T0=200µm, T1=210 

µm. 

Geometry 

The geometry consists of 

two subdomains,  

1.substrate layer- stainless 

steel. 

2. piezoelectric layer- active 

layer of unimorph . 



Meshing and Governing Equations 

 

Figure 2. Piezoelectric Energy 

Harvester mesh. 

 

Piezoelectric Equations 

 S = sE T + d E            

    (1) 

 D = εT E + d T 

Where 

 S -  the mechanical strain vector  

 sE -elastic compliance tensor (Pa-1) 

 T- mechanical stress vector (Nm-2) 

 D -elastic displacement vector (Cm-2) 

 εT -the dielectric permittivity tensor (Fm-1)  

 E- the electric field vector (Vm-1)  

 d- the transverse piezoelectric coefficient        

tensor (CN-1).  

For the substrate layer only mechanical 

behaviour is considered using stress-strain 

relationship. 

 S = sT  (2) 

s is the compliance of stainless steel 

substrate. 

 

Meshing 

•The mesh consists of 238 quad elements  

  for a total number of degrees of freedom     

  10639.  

•The swept mesh tool is used . 

 



 

Subdomain settings 

 
• The material parameters of the substrate are as follows: its density ρ=7850 

kg/m3,Young’s modulus E=200 x 109 Pa,Poisson’s ratio μ=0.33. 

•  The active layer of unimorph is modelled using the following set of properties. 

 -Elastic compliance tensor  

  

 SE =     x 10-12 Pa-1 

 

  

 

 -Piezoelectric tensor 

  

 d =           x 10-12 CN-1 

 

 -Relative permittivity matrix 

  

 εT =               x ε0  

  

 -Density ρ = 3000 kg m-3 
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Boundary conditions 
•  Vertical acceleration : 

 - body load FZ = aρ in each subdomain, a =0.1g and ρ is the density  of the material . 

• One end of the unimorph cantilever is fixed while other is free for  vibration.  

 -fixed constraint condition is applied for the vertical faces of both  the layers. 

 -while all other faces are free of displacement. 

• Electrostatic boundary conditions : 

 -upper and lower face of PZT layer are selected as floating and ground potentials 

respectively  . 

 -while all other faces of piezoelectric layer are kept as zero charge. 

• Mesh  boundary conditions: 

 -to optimize the thickness of the PZT layer, Moving mesh application mode  is used.  

 - bottom face: clamped, 

 - vertical faces: clamped along thickness,  

  -upper surface: tangentially constrained and displaced in the normal direction to the                                         

surface by a given displacement (deltathickness). 

 -deltaThickness is changed from 10μm to 400μm obtaining parameterized moving 

mesh. 

 

 



Modelling and Optimization 

Figure 3 FEM modelling of rectangular, 

triangular and non-traditional geometries.  

 

Figure 4 Tip displacement (nm) 

Vs Thickness(μm). 

 



Results-output voltage 

Figure 5 voltage (mV) Vs thickness (μm) and charge (e-13) 

Vs thickness (μm). 

 



Results-Stored energy 
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Figure 6 Stored electrical energy (fJ) Vs 

thickness (μm).  

Stored electrical energy 



 

Results-Frequency analysis 
  
 

Figure 7 Voltage (V) Vs Frequency (Hz) for three different geometries. 

 



Results- Strain analysis  

Figure 8 Strain curves of three different geometries along X direction. 

  



Performance comparison 

    a)Strain.    b) Deformation. 



Summary 

• A piezoelectric energy harvester with non-traditional 
geometry was designed and simulated in COMSOL 
Multiphysics. 

•  The thickness of PZT layer was optimized to give 
maximum stored electrical energy. 

•  Frequency analysis and strain analysis were carried out for 
the optimized thickness of 210μm.  

• Simulation results demonstrate that the piezoelectric energy 
harvester with non-traditional geometry improves strain and 
generate more voltage at resonant frequency than the 
rectangular and triangular piezoelectric energy harvester. 

• The simulation results suggest that such structures can be 
used for energy generation in wireless sensor networks. 
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