

Simulation of Flux Density in a Hybrid Coil Superconducting Magnetic Energy Storage Using COMSOL Multiphysics

PRESENTED BY: SATRAJIT ROY

UNDER THE GUIDANCE OF: PROFESSOR GARGI KONAR

JADAVPUR UNIVERSITY POWER ENGINEERING DEPARTMENT, LB-8, SECTOR-III, SALT LAKE, KOLKATA-700098, INDIA

Introduction

- Why is storage important ?
- □ Energy storage is a must for hybrid power systems using nonconventional resources to avoid energy dumping.
- □ Stored energy can be used as and when required.
- Various energy storage technologies : -
- □ Compressed Air Energy Storage (CAES)
- Batteries
- ☐ Flywheel
- Supercapacitors
- □ Superconducting Magnetic Energy Storage (SMES)

Why should we choose SMES?

- Direct storage of electrical energy in the form of field energy
- No loss due to resistance of the conductors of the SMES as they are made of superconducting materials which practically offer no resistance to current.
- Huge energy can be stored by increasing the magnetic field which is otherwise not possible with the conventional conductors.
- Energy can be supplied by discharging the SMES using power electronic switches.

What is an SMES?

When current is passed through a conductor a magnetic field is produced. Energy is stored in this field which can be returned to the system by discharging the conductor or a coil made of a conductor. Superconductors practically offer almost no resistance to current flow and can carry high current for a given cross section as compared to a conventional conductor [1]. So a huge field can be created resulting in higher energy storage and compact size of the SMES which uses such coils.

Different parts of an SMES

- Superconducting Coil
- Power Conditioning System
- Cryogenic system
- Cooling Unit

Different parts of an SMES

Figure 1: The parts of an SMES[2]

Figure 2: The superconducting coil (toroid) with the cryogenic system [3]

COMSOL CONFERENCE INDIA 2012

About the coil model used in the work

- A hybrid coil [4] made of an outer Low Temperature Superconducting (LTS) material (NbTi) and an insert coil of High Temperature Superconducting (HTS) material (Bi-2212).
- Both the coils are solenoids.
- Both use pancake coils (of Rutherford cable) single pancake coils for outer one and double pancake coils for insert one.

Figure 3: Structure of a single Double Pancake coil

Coil Design Parameters for Simulation Work

Coil	HTS	LTS
	1 -	17
Material used	Bi-2212	NbTi
Conductor dimension, mm	13.5 × 1.6	12.36 × 1.46
Type of winding	Double pancake	Single pancake
Inner diameter, mm	370	870
Outer diameter, mm	720	969.6
Coil Height, mm	525	949.2
Total no. of turns	1600	2100
Operating current, A	1655	1553
Operating temperature, K	4.2	
Peak field, T	7.5	2.4
Central Field, T	6.95	
Current Density, A/mm ²	28.820	68.993

Figure 4: Schematic diagram of the hybrid coil longitudinal section.

Use of COMSOL Multiphysics

□ Physics of the chosen model

Since field distribution vector \mathbf{B} is to be simulated and DC has been used we use the following equations

$$\nabla \times \left(\mu^{-1} \nabla \times A\right) = J^{e}$$

$$B = \nabla \times A$$

$$H = \mu^{-1} B$$

where A = magnetic vector potential

 J^e = external current density

 \mathbf{B} = magnetic field

H = magnetic field strength

☐ Parameters and Equations for Simulation

- * HTS coil current density is $J_{h0} = 28.82 \text{ A/mm}^2$.
- *LTS coil current density is $J_{10} = 68.993 \text{ A/mm}^2$. These are defined in the **Global Definitions>Parameters** section.
- * Use of Workplane and Revolve options to build model geometry
- * Ampere's law is applied to all the domains

$$\nabla \times H = J^e$$
 where
$$B = \nabla \times A$$
 and
$$H = \mu^{-1} B$$

Expression for current density vector components in the Cartesian coordinate for LTS coil

COMPONENTS	EXPRESSION
X	$-J_{10} \times z / sqrt (x^2 + z^2)$
у	0
Z	$J_{10} \times x / sqrt (x^2 + z^2)$

Expression for current density vector components in the Cartesian coordinate for HTS coil

COMPONENTS	EXPRESSION
X	$-J_{h0} \times z / sqrt (x^2 + z^2)$
У	0
Z	J_{h0} × x/ sqrt (x^2 + z^2)

■ Boundary Conditions

Magnetic insulation is applied to the entire sphere and the equation is

$$n \times A = 0$$

where n is the unit normal.

Meshing

- Mesh settings section Coarse elements selection
- Free Tetrahedral meshing

Figures for Model Geometry and Meshing

Figure 5: The model geometry.

Figure 6: Meshing in 3D for hybrid coil.

Results and Discussion

Magnetic field distribution simulation has been done using the 3D **Plot Group** option and using **Arrow Volume** plot and **Slice plot.**

Figure 7: Slice plot showing the field distribution

Figure 8: Arrow volume and slice plots showing the field distribution

Figure 9: Field distribution values for different x coordinates but fixed y and z values.

- The peak field is 7.5 T and the central field is 6.9 T. The results agree with the published test data of a previous work.
- The overall flux density profile also matches that of the previous work.
- There are two peaks of flux density at fixed y and z coordinates but with varying x distance.
- This happens as there are two coils and each coil produces maximum field in the region next to it.

Conclusion

- Simulation results agree with the published test results of an earlier work [4].
- Model uses solenoid coils; use of toroids can be investigated for less leakage.
- Production of even higher fields leads to a more compact SMES.

Reference & Acknowledgment

- 1. M.N. Wilson, Superconducting Magnets. : Oxford University Press, 1983.
- 2. http://www.chuden.co.jp/english/corporate/press2007/0615_1.ht
- 3. http://www.theoildrum.com/story/2006/9/1/91214/68010
- 4. K. Koyanagi, K. Ohsemochi. M. Takahashi, T. Kurusu, T. Tosaka, M. Ono, Y. Ishii, K. Shimada, S. Nomura, K. Kidoguchi, H. Onoda, N. Hirano & S. Nagaya, Design of a High Energy-Density SMES Coil With Bi-2212 Cables, *IEEE Transaction on Applied Superconductivity*, **Volume 16**(2), 586-589 (2006).

Question/Answer Session

