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Objective and Outline of the Presentation

Objective

Share some of the research works carried out at Chemical
Engineering Division, BARC using COMSOL Multiphysics

@ Highlight the capability of COMSOL Multiphysics to simulate
problems involving two-phase flow and multiple physics

© Q

Part-1: Two-phase Flow Simulations

Drop formation at a single hole in a sieve plate

Air pulsed liquid columns

Liquid-liquid two-phase flow at microfluidic junctions
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@ Part-2: Multiphysics Simulations

@ Flow electrolysers
@ Pore of a supported liquid membrane
@ Mass transfer for a single droplet




Part-1

Two-phase Flow Simulations
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Drop Formation at a Single Hole

m=K, arAC

& Conventional Contactors

@ Mixer settlers q = 6¢
@ Pulsed columns d
9 ROtat{ hg disk contactors m = amount of mass transferred (mol)
@ Centrifugal extractor a = interfacial area (m?)
T => contact time (sec)
@ Novel Contactors AC = average concentration difference (mol/m?)

: - . K, = mass transfer coefficient (m/s)
o Mi CI‘Of / U{dIC devices ¢ = volume fraction of dispersed phase (-)
@ Hollow fibre modules d;, = Sauter mean diameter (m)
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Drop Formation at a Single Hole

@ Objective was to understand the process of drop formation
@ Only one hole was considered
@ Continuous phase was considered quiescent

| 23 mm e
A Phase field method for
interface tracking
Continuous phase: Water
38|mm Dispersed phase: Exxol D80
: Y DReER]
N L 3 mm Meshed
computational Domain
Computational domain

Sen et al., Numerical simulation of drop formation at a hole in quiescent continuous phase, Accepted in International
Congress on Computational Mechanics and Simulations, Hyderabad, 10-12 December, 2012.



Drop Formation at a Single Hole
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Drop Formation at a Single Hole
t_Simulation
7 2.5

A h_Experiment

———————— h_Simulaton % 2
5 & t Experiment % %

s Validation was done using the

g § 8 data reported in literature
=z 3 AN " 1 =
- \i
2 ~—_
T ,
. — 0.5
0] 0]
0] 0.02 0.04 0.06 0.08 0.1 0.12
v (m/sec)

Parametric studies were done to understand the effects of

following variables on drop formation process

@ Flow rate

@ Physical properties (density, viscosity, interfacial tension,
contact angle)

@ Geometry (hole diameter, type of hole)

Soleymani et al., Simulation of drop formation in a single hole in solvent extraction using the volume-of-fluid method,
Chem. Eng. Res. Des., 86 (2008), 731-738
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Liquid column

Air Pulsed Liquid Column

Liquid column with
pulse leg

Meshed computational
domain

Column height 1 m
Column diameter 6 inch
Pulse leg size 2 inch

Phase field method was
used for interface

tracking

Laminar flow of water
and air

Cyclic air pressure
applied at pulse leg

2D simulations
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L-L Two-phase Flow at Microfluidic Junctions

@ Advantages of Microfluidic Devices

Q@ High specific interfacial area for heat transfer and multiphase
applications -

(771 0 1 T — DRI o e e e [l.

@ Less uncertainty in scale up " .

...........................................

@ Low inventory (better for hazardous chemlcals) 5

1 E+01

@ Uninterrupted production
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@ In situ production / distributed production MR 5 ,

;._;“.“ 'L n\ \ A .«;"p.

. s 3 C‘p )q;,'\f'- 63‘) ! ua\: nns..& ! :?PF {:‘jy‘-“ {-F’”
& Advantages of SX in Microchannels ‘; PP
'}:“ 'Fé . 4\4" ;,‘,\"“" ;’o{'
@ High specific interfacial area (low contact time) i
Comparison of overall mass transfer

@ Ordered and controllable flow patterns coefficients in different SX equipment

@ Monodispersed droplets (ease in phase separation)

Zhao et al., Liquid-liquid two-phase mass transfer in the T-junction microchannels, AIChEJ, 53 (2007), 3042-3053
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L-L Two-phase Flow at Microfluidic Junctions 3

Slug Flow

Different types of L-L flow
patterns observed in a
serpentine microchannel
for water butanol system

)El;llly Dispersed Flow

Droplet Flow

Annular Dispersed Flow

Sarkar et al., Liquid-liquid two-phase flow patterns in a serpentine microchannel, I&ECR, 51 (2012), 5056-5066
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L-L Two-phase Flow at Microfluidic Junctions

I =

Cross-flow T-junction Flow Focusing Junction

@ Numerical simulations can be used to predict liquid-liquid two-phase
flow patterns at microfluidic junctions if geometry, flow conditions and
physical properties are known

@ Numerical simulations can serve as a screening tool to zero in on a
geometry that will give the desired flow pattern

Singh et al., Numerical simulation of liquid-liquid two-phase flow at microfluidic junctions. 3" European Conference on
Microfluidics, Heidelberg, Germany, 3-5 December 2012.



Part-2

Multiphysics Simulations
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Numerical Simulation of Flow Electrolysers &

@ To study the effect of flow field on the performance of electro-neutral
bulk of a flow electrolyzer having stationary cathode

@ Simulation of flow electrolyser having streaming mercury cathode
@ Coupled solution of Navier-Stokes and Nernst-Planck equations

@ Validation of the computational approach was done using the data
reported in literature

Reactions:

2CI >, +2e-
(at the anode) Electrolyte inlet Main channel = Electrolyte outlet
2H,0 +2e "-» 20H ~ + H,1 1 .

(at the cathode) _
Na*, CI-, OH" are the ions. | Cathode

5

Domain used for validating the computational approach

Lu et al., Numerical simulation of salt water electrolysis in parallel plate electrode channel under forced convection.
Electrochimica Acta, 53 (2007), 768-776.
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Numerical Simulation of Flow Electrolysers %
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Mesh in flow path Mesh in flow path

Obstacles ensuring higher velocities close to anode and cathode
(mesh type obstacles and baffles in the centre) may lead to better
performance of electro-neutral bulk.

Shukla et al., Numerical simulation of flow electrolysers: effect of obstacles, 79 (2012), 57-66.
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Numerical Simulation of Flow Electrolysers &

Numerical Simulation of flow electrolyser with streaming mercury
cathode

@ Comparison of co-current and counter-current configurations

@ Effect of mercury flow rate

Electrolyte Anode

¥
' 4
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Mercury 1/0 — \ — Mercury /0

\

Interface Mercury layer

\| Current density 62691 (A/m?)

G _______________________ |



) (Afm?)

Numerical Simulation of Flow Electrolysers %
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with continued increase in
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The study provided useful
insights into the working of flow
electrolysers having streaming
mercury cathode
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Mass Transfer In a Single Pore of SLM

=¥ Counter-current
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\ The study led to an

T understanding of what
K
B happens at pore level in a
supported liquid membrane
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Mass Transfer for a Single Droplet
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Conclusions

Q@ Several interesting application of COMSOL Multiphysics to
simulate two-phase flow and multiphysics problems have been
presented.

@ In some cases results obtained from COMSOL have been
quantitatively validated using the experimental data.

Q@ In other cases the results have been qualitatively validated.

Q@ COMSOL Multiphysics is found to be a very useful tool to gain
insights into working of process equipment and phenomena
involving two-phase flow and multiple physics.
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