

COMPUTATIONAL FLUID DYNAMICS MODELING OF FLOW OF DRY FOAM IN A PIPE

> *By Mohanraj Divakaran* and *Sanjeev Kumar Gupta Department of Chemical Engineering Indian Institute of Science, Bangalore*

Excerpt from the Proceedings of the 2012 COMSOL Conference in Bangalore

A Typical foam flow set-up for measuring ΔP vs. flow rate

Models of foam rheology

Reference	Empirical Model	к	n	$ au_y$
		(Pa s ⁿ)		(Pa)
Wenzel et al,	$\tau = \tau_y + k\gamma^n$	1.73 -6.8	0.13 - 0.69	1.32 -12.05
1970				
Thondavadl and	$\tau = k\gamma^n$	1.43	0.61	
Lemlich, 1985				
de Kransinki and	$\tau = k\gamma^n$	18.5	0.5	
Fan, 1984				
Enzendorfer et	$ au = k\gamma^n$	2.5	0.34	
al, 1995				
Boissonnet et al,	$\tau = k\gamma^n$	0.26	0.6	
1997				
Gardiner et al,	$ au = k \gamma^n$	2.29	0.29	
1998				
			1	

Source: Data taken from Gardiner (1999)

Processes involved in foam flows

- Yield stress
- Wall slip layer
- Slipping of bubbles past each other
- Compressibility

Wall slip layer

• Film drainage

Parameters influencing rheology

- Flow rate
- Liquid fraction
- Bubble size
- Pipe diameter
- Wall roughness

Source: <u>www.tcd.ie/physics/foams/liquid.php</u> accessed on 14.06.12

Empirical models are not satisfactory due to poor control on parameters

Experimental predictions on foam flow by Choudhary (2002)

Flow rate (ml/s)	$\frac{\Delta P}{L}$ (N/m ³)	Bubble size (mm)
7.2	90.8	3.9
9.1	115.7	3.9
11.3	140.4	3.9
12.8	157	3.9

Experimental predictions on foam flow by Choudhary (2002)

$$\Delta P \ correlation:$$
 $\Delta p \propto \frac{Q^{2/3}}{R^2}$

Lesser dependence on flow rate than a laminar flow!

Objective of the present work

➤ A model to explain the reduced dependence of △P on flow rate.

Simulated Zone

Boundary conditions: Momentum transport

Tangential stress condition at interface,

$$(n.\tau_l) - [(n.\tau_l).n]n = (\mu^s + \mu^d)\nabla_s\nabla_s.v^s + \nabla_s\sigma$$

Tangential stress felt on liquid side near interface

Surface viscous stress

Marangoni stress

Boundary conditions: Species transport

Surfactant flux condition at interface,

$$\nabla_{\!\!S}.\,(v^s C^s) \quad + \quad \nabla_{\!\!S}.\,(j^s) = n.\,j^b$$

Convective surface flux

Diffusive Surface flux *Flux from the buk to interface*

Velocity Field (m/s) in a Frame Moving with Bubble Velocity

Velocity field, m/s (wall velocity - 2×10^{-2} m/s)

Surfactant Concentration Profile

Pressure Drop vs. Flow Rate Predictions

<---- Wall shear stress

Pressure drop calculation :

 $\Delta p \pi R^2 = \tau_w 2\pi R$

Surfactant concentration mol/m ³	а	b	С
15	1339	0.9137	0.0006
30	1365	0.9351	0.0005
40	1395	0.9474	0.0005
50	1404	0.9534	0.0005
65	1416	0.9607	0.0005
70	1419	0.9624	0.0004

Velocity Field (m/s) in a Stationary Frame of Reference

Pressure along interface, Pa

Shear rate $(\partial v_x / \partial x)$ plot, 1/s

Experimental Validation:

Thondavadi, N. N., & Lemlich, R. (1985). Flow properties of foam with and without solid particles. Ind. Eng. Chem. Process. Dev.

Summary

Portrait of Foam flow

Thank You