
1 

                                           

Numerical Study of Navier-Stokes Equations in Supersonic Flow 

over a Double Wedge Airfoil using Adaptive Grids 

Ramesh Kolluru
1
 and Vijay Gopal

1
 

1
BMS College of Engineering, Bangalore, Karnataka, India 

*Corresponding author: BMS College of engineering, Bangalore 560 019, aero.g.vijay@gmail.com 

 

 
Abstract: Numerical study of aerodynamic 

characteristics in steady laminar supersonic flow 

over a double wedge airfoil is carried out using 

finite element based CFD software tool “Comsol 

Multiphysics”. The aerodynamic characteristics 

namely; lift and drag are analysed by numerically 

solving compressible Navier-Stokes equations in 

the flow field around double wedge airfoil by 

parameterising the angle of attack α and thickness 

to chord ratio 
 

 
.   The present work makes use of 

“high Mach number flow” module provided in 

Comsol Multiphysics with pseudo time stepping 

methodology and adaptive gridding technique to 

obtain a steady state solution by marching in time 

by capturing the shocks and expansions occurring 

in the flow field. The results obtained from the 

CFD tool are compared with inviscid shock 

expansion theory and are found to be in good 

agreement with the same. 

Keywords: Pardiso, Angle of attack, supersonic 

airfoil, shock. 

 

1. Introduction: The supersonic aerofoils are 

broadly classified into two types; biconvex aerofoil 

and double wedge aerofoil whose cross-sectional 

profiles are indicate in Figure 1. 

 
Figure 1: Cross-sectional view of typical supersonic 

aerofoil. 
 

Existence of such bodies in the supersonic flow 

field creates singularities in the flow such as shock 

and expansion waves.  The effect of these 

singularities when such aerofoils are used in 

supersonic flight increases the drag which is 

undesirable. This additional component of drag 

other than form and skin drag is often referred to as 

wave drag and it is found that this component of 

drag can be minimised if the shock is kept attached 

to the body in flight. This can be achieved by 

designing a thinner cross-section along with sharp  

 

 

leading and trailing edges unlike subsonic aerofoil 

whose rounded leading edge produces a detached 

shock [10] which causes greater drag compared to 

the attached shock. Therefore the profiles indicated 

in Figure 1 are designed to have a better lift to drag 

ratio as compared to subsonic aerofoils in 

supersonic flight [4]. In the present work an attempt 

is made to study the aerodynamic response of 2D 

double wedge aerofoil in supersonic flow with free 

stream Mach number of 2.5 by varying the angle of 

attack and thickness to chord ratio by performing 

numerical simulation using adaptive grids. The 

results thus obtained from numerical solution are 

compared with shock-expansion theory results. 

 

1.2. Aerodynamic coefficients: These are non-

dimensional numbers which are independent of 

density and free stream velocity which enables us 

to generalise the important aerodynamic parameters 

such as lift and drag of the aerofoil [8]. In the 

following discussion we evaluate and analyse 

pressure (1) lift (2)  and drag (3)  coefficients for an 

aerofoil with chord length ‘c’ and span 1m. 
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1.3 Geometry of aerofoil: The symmetrical double 

wedge aerofoil design are characterised by two 

salient geometrical parameters namely; maximum 

thickness (ta) and chord length (ca) as indicated in 

Figure 2. 

 

Figure 2: Schematic diagram indicates the geometry of 

double wedge aerofoil. 
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3. Governing equation of fluid: In the current 

study, laminar time dependent compressible 

Navier-Stokes equations are solved to obtain a 

steady state solution by marching in time. The 

compressible Navier-Stokes [6] consists of 

conservation laws of mass (4), momentum (5) and 

enthalpy (6). These equations are solved for a 2D 

flow field over a double wedge aerofoil. The FEM 

tool uses a non-conservative form of the governing 

equations as described below  

                               (4) 

 

                                                                 (5) 

 

                       (6) 

 
To obtain closed form equations, the thermo-

dynamic state relation for ideal gas is used .The 

viscosity variation with temperature is solved using 

the help of Sutherland’s law described in 

expression (7) while the thermal conductivity k is 

directly obtained from the material library in FEM 

tool.  

                              (5) 

Where Tref=273K, 𝜇ref=1.716e-5Pa-s, S=111K. 

 

5. Simulation model:  The model is constructed in 

the GUI provided in Comsol Multi-physics for a 

2D case as depicted in Figure 3.  

 

 
Figure 3: 2D Simulation model in Comsol where the 

shaded region depicts the flow regime. 

 

The model contains an inlet and an outlet with two 

slip walls above and below the aerofoil which is 

placed in the centre. The flow is numerically 

simulated for aerofoil having thickness to chord 

ratio (   
 

 
) of 0.08, 0.1 and 0.12. The chord 

length is 1m for all the cases while only the 

thickness is varied. For each case of tc the angle of 

attack (α) in anti-clockwise direction is varied from 

the values in the set given by; (0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 

8
0 

and 12
0
). The dimensions of the boundaries are 

chosen such that the shock reflections from the 

walls are kept at minimum level. 

6. Boundary and initial Conditions: The free 

stream conditions that will be considered in this 

study will be similar to the atmosphere conditions 

that prevail at 12km altitude [9]. The boundary and 

initial conditions are given by: 

a) Wall: Slip condition. 

b) Aerofoil: No slip condition. 

c) Inlet: M=2.5, T=218K and p=0.2atm. 

d) Outlet:     . 

The initial conditions specified for the domain are: 

a) Domain variables: p=0.2atm, T=218K 

b) Domain Velocity: ux= 600m/s, uy= 0m/s. 

 

7. Grid and Solver: Comsol Multi-physics 

provides a wide variety of meshing and solver 

options. As the flow is characterised by shock 

wave, consequently high gradients of primary 

variables exist, to capture this, adaptive meshing on 

unstructured triangular mesh is implemented as 

depicted in Figure 4. Also the boundary layer effect 

[7] is captured by using 6 to 8 rectangular cell grids 

on boundaries having no-slip condition. The 

boundary layer mesh thickness and growth rate is 

varied accordingly for each case for desired result. 

The type of mesh interpolation or element order is 

selected in Comsol Multi-physics to be “P1+P1” 

which indicates first order element type for velocity 

and pressure which is used for FEM computation. 

  

 
Figure 4: Adaptive grid for tc=0.1 and α=120case. 

 

To solve for a particular case, the Euler equations 

are solved first whose solution is made the initial 

condition for obtaining viscous solution. All the 

primary variables in the solver are fully coupled 

using pseudo time stepping with a stationary solver. 

The stationary solver uses PARDISO (Parallel 

Sparse Direct Linear Solver) [3] which is capable of 

solving large sparse symmetric and unsymmetrical 

linear system of equations with good memory 

efficiency along with nested dissection 

multithreaded pre-ordering algorithm. For all the 

cases the tolerance was made 0.01 which was 

convergence the criteria for numerical simulation. 

To any curb convergence problem the CFL number 

was made 0.9 for few cases. 
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8. Results and analysis: The aerodynamic 

coefficients are evaluated using both shock-

expansion (SE) theory and numerical simulation of 

Navier-Stokes (NS). To solve the flow through 

shock-expansion theory [2], [5] for various 

geometries and angle of attack, a MATLAB code 

was developed Appendix-I. This code makes use of 

oblique shock relations and Prandtl-Meyer relation 

along with required thermodynamics to evaluate 

the aerodynamic coefficients for the current study. 

For the numerical simulations, y-axis was made 

perpendicular to free stream direction while x-axis 

was along it.  The lift and drag per unit span was 

obtained by line integration of total stress along the 

airfoil in y and x direction respectively. Thus the 

coefficient of lift (CL) and drag (CD) are evaluated 

for all cases of tc and α, where the values of α are 

(0
0
, 1

0
, 2

0
, 3

0
, 4

0
, 5

0
, 8

0 
and 12

0
) and that of tc are 

(0.08, 0.10 and 0.12). The CL v/s α graph which is 

obtained from SE theory is plotted in Figure 5 while 

that obtained from numerical simulation of Navier-

Stokes equations is plotted in Figure 6. 

 
Figure 5: Graph indicates the variation of CL with α 

which is obtained from shock-expansion theory for tc = 

(0.08, 0.10 and 0.12). 

  
Figure 6: Graph indicates the variation of CL with α 

which is obtained from solving Navier-Stokes for tc = 

(0.08, 0.10 and 0.12). 

 

Although the behaviour of CL with tc cannot be 

generalised, its variation is proportional to angle of 

attack and found to be linear, also close observation 

reveal that the SE theory is less sensitive to 

variation of tc while significant variation is 

captured in Navier-Stoke solution. The plot of CD 

v/s α for both for both SE theory Figure 7 and 

Navier-Stoke solution Figure 8 are plotted. 

 
Figure 7: Graph indicates the variation of CD with α 

which is obtained from shock-expansion theory for tc = 

(0.08, 0.10 and 0.12). 

 
Figure 8: Graph indicates the variation of CD with α 

which is obtained from solving Navier-Stokes for tc = 

(0.08, 0.10 and 0.12). 

 

From the plots represented in Figure7, 8, the 

behaviour of CD with α for SE theory is observed to 

be linear while that for numerical simulation of NS 

equations is non-linear, also, it can be seen that CD 

increases with tc irrespective of SE or NS solutions. 

The contribution to drag in a supersonic flight is 

mostly from wave drag. The SE theory only 

captures this wave-drag while the numerical 

simulation of NS equations captures wave, form 

and skin drag which substantiates the observation 

from plot that for a particular value of α, the value 

of CD in case of NS solutions is higher when 

compared to the values obtained from SE theory. 

To explore this observation more closely, the 

relative percentage error between NS and SE 

solutions with respect to NS solutions for CL and 

CD values for a specific case tc=0.1 v/s α are plotted 

in Figure 9, 10 respectively. 
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Figure 9: Plot for relative percentage error between the 

values of CL obtained from NS and SE solutions with 

respect to NS solution v/s α for tc = 0.10. 

 

 
Figure 10: Plot for relative percentage error between the 

values of CD obtained from NS and SE solutions with 

respect to NS solution v/s α for tc = 0.10. 

 

8.1 Result and analysis of specific cases: To 

obtain a detailed insight into the numerical 

solution, two cases are inspected for aerofoil 

designed with tc =0.10. For the first case α = 4
0
 

while for second it is 12
0
. The aerodynamic 

coefficient Cp as defined in Section 1.2 indicates 

the variation in pressure along the aerofoil for both 

top and bottom surface which is plotted for α=4
0
 

and 12
0
 as indicated in Figure 11, 12. 

 

 
Figure 11: Graph plotted for Cp v/s Arc length long the 

boundary of aerofoil with tc=0.10 and α=40. 

 

 

Figure 12: Graph plotted for Cp v/s Arc length of along 

boundary of aerofoil with tc=0.10 and α=120. 

 

From the graph plotted in Figure 11, 12 it can be 

observed that the values of Cp in the fore region of 

airfoil increases with positive angle of attack at the 

bottom surface as the shock strengthens while that 

for top surface the shock weakens eventually 

causing expansion at higher angle of attack. 

Therefore from the above argument it can be 

concluded that in the fore region of the airfoil the 

amount difference in Cp between top and bottom 

surface increases with angle of attack, also, 

argument based on similar lines can substantiate 

the increase in difference in Cp between top and 

bottom surface in the aft part of aerofoil. As the 

inferences regarding viscous effect cannot be 

drawn from Cp, the shear rate provides insight into 

the same which is plotted for both top and bottom 

surface of aerofoil at α = 4
0
 and 12

0
 in Figure 13 

and Figure 14 respectively. 

 
Figure 13: Graph plotted for Shear rate v/s Arc length 

along boundary of aerofoil with tc=0.10 and α=40. 

 
Figure 14: Graph plotted for Shear rate v/s Arc length 

along boundary of aerofoil with tc=0.10 and α=120. 

 

It is evident from the plots above that a stronger 

shock region is subjected to a higher shear rate 

which increases the wall shear stress as compared 

to a weaker shock region. The effect of increasing 

the angle of attack increases the strength of the 

shock region in lower surface and weakens it at 

upper surface. This can be better visualised by 

surface plots of pressure Figure 15, 16, Mach 

number Figure 17, 18 and temperature Figure 19, 20 

and density contours Figure 21, 22. 
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Figure 15: Surface plot of pressure for tc=0.10 and 

α=4
0
. 

 

 
 

Figure 16: Surface plot of pressure for tc=0.10 and 

α=12
0
. 

 

 
 

Figure 17: Surface plot of Mach number for tc=0.10 

and α=4
0
 with two stream lines. 

 

 

 
 

Figure 18: Surface Plot of Mach number for tc=0.10 

and α=12
0
 with two stream lines. 

 

  

 

 

 

 

 
 

Figure 19: Surface plot of temperature for tc=0.10 and 

α=4
0

. 

 

 
 

Figure 20: Surface plot of temperature for tc=0.10 and 

α=12
0
. 

 

 
 

Figure 21: Density contour plot for tc=0.10 and α=4
0
. 

 

 

 

 
 

Figure 22: Density contour plot for tc=0.10 and α=4
0
. 
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9. Conclusion:  The solution obtained from 

numerical simulation performed with FEM tool is 

in good agreement with shock-expansion theory 

indicating the fundamental flow field behaviour to 

be same. The difference in the values of 

coefficients obtained from SE-theory and 

compressible NS numerical simulation indicates 

the expected viscous and wake effects that exist in 

nature. Thus Comsol Multiphysics simulates the 

flow to acceptable standards providing the users a 

platform to simulate high Mach number flow along 

with other required physics. The double wedge 

aerofoil was simulated for 24 cases with inlet 

conditions similar to atmospheric conditions that 

prevail at 12km cruise altitude and with free stream 

Mach number M=2.5. The values of coefficients 

thus obtained from numerical simulation in the 

current study are only applicable for infinite span 

wing having airfoil section congruent to aerofoil 

designed in this current work [1]. In the range of 

parameters that are varied in this study no flow 

separation was observed on the aerofoil surface in 

any of the cases. The MATLAB code Appendix-I 

which was developed in the current study 

implements SE theory to evaluate aerodynamic 

coefficients for double wedge airfoil is capable of 

computing attached shock cases only and not 

otherwise. 
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Appendix-I 
clear all; 

close all; 

clc; 

disp('LIFT,DRAG,PRESSURE,TEMPERATURE,Cl and CD EVALUATION FOR DOUBLE WEDGE AEROFOIL 

FOR') 

disp('ATTACHED SUPERSONIC FLOW ') 

disp('.') 

disp('.') 

disp('ENTER THE FOLLOWING DATA WITH FREE STREAM DIRECTED TO RIGHT SIDE') 

t=input('enter the value of maximum thickness of doublewedge aerofoil in meters   '); 

c=input('enter the value of chord length of doublewedge aerofoil in meters   '); 

M=input('enter the free stream Mach number   '); 

degrees=input('enter the anti-clockwise angle of attack in degrees   '); 

P=input('enter the free stream static pressure in pascals   '); 

r=input('enter the ratio of specific heats   '); 

R=input('enter specific gas constant in [J/(Kg.K)]   '); 

T=input('enter free stream Temperature in kelvin   '); 

a=abs(degrees./57.2957795); 

e=atan(t./c); 

cs=sqrt(r.*R.*T); 

l=0.5.*(sqrt(t.^2+c.^2)); 

Dv=((M.^2-1).^2-3.*(1+((r-

1)./2).*(M.^2)).*(1+((r+1)./2).*(M.^2)).*((tan(abs(e)+abs(a))).^2)); 

if(Dv<0) 

    disp('.') 

    disp('.') 

disp('detached shock exist or invalid data entry: Computation not possible !'); 

  

else 

    SWDv=input('enter 1 for weak shock case or 0 for strong shock case '); 

    if(SWDv==1||SWDv==0) 

       Q2=abs(e)-abs(a); 

       disp('.') 

       disp('.') 

       disp('.') 

       disp('SOLUTION') 

       disp('>Valid data entered for free stream condition') 

       if(Q2>0) 

        

         disp('>Fore upper region of aerofoil under goes a shock wave') 

         lambda=((M.^2-1).^2-3.*(1+((r-

1)./2).*(M.^2)).*(1+((r+1)./2).*(M.^2)).*((tan(Q2)).^2)).^(1./2); 

         chi=((M.^2-1)^3-9.*(1+((r-1)./2).*(M.^2)).*(1+((r-

1)./2).*(M.^2)+((r+1)./4).*(M.^4)).*(tan(Q2).^2))./((lambda).^3); 

         B2=atan((M.^2-1+2.*(lambda).*cos((4*pi*SWDv+acos(chi))./3))./(3.*(1+((r-

1)./2).*(M.^2)).*tan(Q2))); 

         P2=P.*(1+((2.*r)./(r+1)).*((M.*sin(B2)).^2-1)); 

         M2=(sqrt(((M.*sin(B2).^2)+(2./(r-1)))./(((2.*r)./(r-1)).*M.*sin(B2)-

1)))./(sin(B2-Q2)); 

         T2=T.*(1+((2.*r)./(r+1)).*((M.*sin(B2)).^2-1)).*(((r-

1).*(M.*sin(B2).^2)+2)./((r+1).*(M.*sin(B2).^2))); 

        

       else 

        disp('>Fore upper region of aerofoil under goes a expansion') 

        syms IM 

        IM2=solve(abs(Q2)+sqrt((r+1)./(r-1)).*(atan(sqrt(((r-1)./(r+1)).*(M.^2-1))))-

atan(sqrt(M.^2-1))-sqrt((r+1)./(r-1)).*(atan(sqrt(((r-1)./(r+1)).*(IM.^2-

1))))+atan(sqrt(IM.^2-1))); 

        M2=abs(IM2); 

        P2=P.*((1+((r-1)./2).*(M.^2))./(1+((r-1)./2).*(M2.^2))).^(r./(r-1)); 

        T2=T.*((1+((r-1)./2).*(M.^2))./(1+((r-1)./2).*(M2.^2))); 

         

       end 

     disp('>Fore lower region of airfoil under goes a shock wave') 

         Q3=abs(e)+abs(a); 

         lambda1=((M.^2-1).^2-3.*(1+((r-

1)./2).*(M.^2)).*(1+((r+1)./2).*(M.^2)).*((tan(Q3)).^2)).^(1./2); 

         chi1=((M.^2-1)^3-9.*(1+((r-1)./2).*(M.^2)).*(1+((r-

1)./2).*(M.^2)+((r+1)./4).*(M.^4)).*(tan(Q3).^2))./((lambda1).^3); 

         B3=atan((M.^2-1+2.*(lambda1).*cos((4*pi*SWDv+acos(chi1))./3))./(3.*(1+((r-

1)./2).*(M.^2)).*tan(Q3))); 

         P3=P.*(1+((2.*r)./(r+1)).*((M.*sin(B3)).^2-1)); 

         M3=(sqrt(((M.*sin(B3).^2)+(2./(r-1)))./(((2.*r)./(r-1)).*M.*sin(B3)-

1)))./(sin(B3-Q3)); 

         T3=T.*(1+((2.*r)./(r+1)).*((M.*sin(B3)).^2-1)).*(((r-

1).*(M.*sin(B3).^2)+2)./((r+1).*(M.*sin(B3).^2))); 

    

    disp('>Aft upper region of aerofoil under goes expansion') 

        Q4=2.*abs(e); 

        syms IMA 

        IM4=solve(Q4+sqrt((r+1)./(r-1)).*(atan(sqrt(((r-1)./(r+1)).*(M2.^2-1))))-

atan(sqrt(M2.^2-1))-sqrt((r+1)./(r-1)).*(atan(sqrt(((r-1)./(r+1)).*(IMA.^2-

1))))+atan(sqrt(IMA.^2-1))); 

        M4=abs(IM4); 

        P4=P2.*((1+((r-1)./2).*(M2.^2))./(1+((r-1)./2).*(M4.^2))).^(r./(r-1)); 

        T4=T2.*((1+((r-1)./2).*(M2.^2))./(1+((r-1)./2).*(M4.^2))); 

     

   

    disp('>Aft lower region of aerofoil under goes expansion') 

        Q5=2.*abs(e); 

        syms IMB 

        IM5=solve(Q5+sqrt((r+1)./(r-1)).*(atan(sqrt(((r-1)./(r+1)).*(M3.^2-1))))-

atan(sqrt(M3.^2-1))-sqrt((r+1)./(r-1)).*(atan(sqrt(((r-1)./(r+1)).*(IMB.^2-

1))))+atan(sqrt(IMB.^2-1))); 

        M5=abs(IM5); 

        P5=P3.*((1+((r-1)./2).*(M3.^2))./(1+((r-1)./2).*(M5.^2))).^(r./(r-1)); 

        T5=T3.*((1+((r-1)./2).*(M3.^2))./(1+((r-1)./2).*(M5.^2))); 

    else 

        disp('.') 

        disp('.') 

        disp('.') 

        disp('invalid information') 

    end 

     

end 

  

L=l.*((P5-P2).*cos(abs(e)-abs(a))+(P3-P4).*cos(abs(e)+abs(a))); 

D=l.*((P5-P2).*sin(abs(e)-abs(a))+(P3-P4).*sin(abs(e)+abs(a))); 

RLD=L./D; 

V=M.*cs; 

dp=(0.5).*((P)./(R.*T)).*(V.^2); 

CL=(L)./(dp.*c); 

CD=(D)./(dp.*c); 

ch=c./10:c./10:c; 

fore=[ones(1,5),zeros(1,5)]; 

aft=[zeros(1,5),ones(1,5)]; 

disp('.') 

disp('Lift per unit span length L(N/m) is :') 

eval(L) 

disp('Drag per unit span length D(N/m) is :') 

eval(D) 

disp('Lift to Drag ratio is :') 

eval(RLD) 

disp('Coefficient of lift is') 

eval(CL) 

disp('Coefficient of drag is') 

eval(CD) 

disp('FIGURE 1 :Coefficient of pressure CP plot on the surface of aerofoil ') 

CP_u=((P2-P).*fore+(P4-P).*aft)./dp; 

CP_l=((P3-P).*fore+(P5-P).*aft)./dp; 

figure(1) 

plot(ch,CP_u,ch,CP_l),ylabel('CP'),xlabel('Chord Length'),legend('upper 

surface','lower surface'); 

disp('FIGURE 2 :Mach number plot on the surface of aerofoil ') 

M_u=M2.*fore+M4.*aft; 

M_l=M3.*fore+M5.*aft; 

figure(2) 

plot(ch,M_u,ch,M_l),ylabel('Mach number'),xlabel('Chord Length'),legend('upper 

surface','lower surface'); 

disp('FIGURE 3 :Pressure plot on the surface of aerofoil ') 

P_u=P2.*fore+P4.*aft; 

P_l=P3.*fore+P5.*aft; 

figure(3) 

plot(ch,P_u,ch,P_l),ylabel('Pressure in pascal'),xlabel('Chord Length'),legend('upper 

surface','lower surface'); 

disp('FIGURE 4 :Temperature plot on the surface of aerofoil ') 

T_u=T2.*fore+T4.*aft; 

T_l=T3.*fore+T5.*aft; 

figure(4) 

plot(ch,T_u,ch,T_l),ylabel('Temperature in Kelvin'),xlabel('Chord 

Length'),legend('upper surface','lower surface'); 


