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Introduction 

• Modular orthopaedic devices are a feature of total joint 
replacements today 

• Benefits: 

• Allow surgeons to choose from a variety of available 
implant sizes, designs & material options for the 
procedure & patient specific requirements 

• Drawbacks: 

• Can lead to fretting fatigue & corrosion, due to the 
resulting micro-motion & contact stresses  

• Found at mismatched surfaces during cyclical loading, 
resulting in interface wear 

• Can lead to implant rejection, due to wear debris 
induced osteolysis 
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Example Modular Implants 
• Components 

• Acetabular Cups (Liners & Shells) 

• Femur Stems 

• Femur Heads 

• Knee 

• Total System (Knee, Femur, Head & Cup) 

• Materials 

• Cobalt Chromium Alloys 

• Technical Ceramics 

• Titanium Alloys 

• Steel Alloys 

• Polymers (UHMWPE & PEEK) 

Trinty Cup &  
MiniHip Stem 

(Corin, UK)  

METS Modular  
Total Femur 

(Stanmore Implants, UK)  



OVERVIEW & AIM 
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Overview 

Assessment of  
Femur Head & Stem 

→ 
 
 
 
 
→ 
 

Variation in interface design  
1. Tolerances 
2. Geometric parameters 
3. Materials  
 
Study look at variation in interface angle (θ): 
1. θ stem 
2. θ head 
 

   θ stem 

   θ head 
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Aim 

Positive mismatch Ideal fit Negative mismatch 

θ stem > θ head θ stem < θ head θ stem = θ head  

• Quantify & compare fretting fatigue for three specific fits 
between the femur stem & head 

 

1. θ stem = θ head 
2. θ stem > θ head 
3. θ stem < θ head 

 
 



GEOMETRY GENERATION, 
MATERIALS & LOADS 
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Geometry Generation from CT Scans 

CT scan  
(Patient Specific) 

Geometry 
Generation 

Implant Femur  
Stem & Head 

Design 

Bone Property 
Mappings 
(Density) 



R&D, FEA, CFD, Material Selection, Testing & Assessment © Continuum Blue Ltd 

Bone Properties (Density, Modulus & nu Relationships) 

Density 

Poisson's Ratio 

Young’s Modulus 

Helgason [2008] 
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Material Properties (Validation: Patient Specific) 

Femur 
 

Minimum 
 

 
Mean 

 

 
Maximum 

 

Model 0.1 8.3 23.3 

Validated Femur 
[Helgason 2008] 0.5 6.6 22.5 

E (GPa) 

Fraction 
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Density Refinement (Femur Cortical Surface) 

Bone density mapping was refined around cortical surface 
to capture high variation in density which may be missed 
out by using standard grid method 

Density Point Cloud Illustrating 
Grid vs. Refined Cortical 

Surface 
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Density (kg/m3) 

Surface Plot Sectional Slice Plot 
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Young’s Modulus (GPa) 

Surface Plot Sectional Slice Plot 
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Implant Materials (SN Curves & Fatigue Properties) 

Head Stem 
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FE Model Load Validation 

Kinematic model data for different 
activities (typical patient) [6] 

 Kinematic load data obtained from Bergmann et al.[6], 
based on average physical data from 4 patient data sets 
 
 Loads muscle force boundary conditions to FEA model 

Cyclic loading applied on femur 
head & abductor muscle 



THEORY 
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General Material Fatigue 

b) Soderberg’s Amplitude & Mean Stress Relationship a) Combined Cyclic & Mean Stress Schematic 

 General Material fatigue described by relating: 
 Oscillating mean stress & stress amplitude  

 Using either the Goodman, Gerber or Soderberg relationships, an equivalent 
stress amplitude with no mean stress can then be found from the mean stress 
& stress amplitude 
 Soderberg’s relationship is utilised as conservative compared to Goodman 

or Gerber relationships. 
 This equivalent stress amplitude with no mean stress, can then be read off 

physical SN curves (R=-1) to obtain the predicted number of cycles to failure 
for the fatigued part due to cyclic loading.  
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Equivalent σamplitude & Cycles to Failure 

a) Obtaining Equivalent Stress Amplitude with no Mean Stress from 
Soderberg’s Amplitude & Mean Stress Relationship 

b) Predicted of Number of Cycles to Failure from SN Curves 
using Equivalent Stress Amplitude with no Mean Stress  

 For each material domain, mean stresses & stress amplitudes are 
calculated over single walking gait load cycle. 

 Using Goodman diagram & Soderberg relationship  
 Equivalent stress amplitude with zero mean stress are obtained 
 Stress Ratio (R) = -1 

 Equivalent stress amplitudes are then read off SN curves (function) to 
predict number of cycles to failure for the fatigued part due to cyclic 
loading. 

Stress Amplitude 
(σa) 

 

σN 

 

Stress  
Amplitude (S) 

 

Equivalent Stress 
Amplitude with no 

Mean Stress (σa
Equiv) 

 

σy 

 
σm

Model 

 

Stress Amplitude 
from Model 
(σa

Model) 

 

σa
Model 

 

Mean Stress  from 
Model (σm

Model) 

 
Mean Stress 

(σm) 

 

σa
Equiv 

 
σa

Equiv 

 

NModel 

Model Predicted Number 
of cycles to Failure 

 Number of 
Cycles (N) 
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Fretting Fatigue Theory (SN Curve Adjustment) 

For Fretting Fatigue, the SN curves were adjusted by the following 
equation for fretting strength (Sfr) to take account of early prediction to 
failure due to fretting: 
 
 
Where, 

Sfr  = Fretting fatigue strength [MPa] 
So  = Fatigue strength in the absence of fretting [MPa] 
µ    = Coefficient of friction 
po   = Contact pressure [MPa] 
l     = Fretting amplitude [µm] 
k    = Constant (3.8 [µm])  

 

Relation between 
Plain Fatigue vs. 
Fretting Fatigue 

Plain Fatigue SN 
Semi-log Curve (S0)  

Fretting Fatigue SN 
Semi-log Curve (Sfr)  
(Only applicable on 
contact surfaces)  

Stress  
Amplitude (S) 

 

Log of  Number of 
Cycles (N) 

 



RESULTS 
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Implant Stress & Load (Walking Gait Cycle) 

Load at 20% gait cycle  Load at 60% gait cycle 

Load vectors during gait cycle  von Mises stress on the stem 
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Results: von Mises Stress 

Positive mismatch Ideal fit Negative mismatch 

θ stem > θ head θ stem < θ head θ stem = θ head  

Posterior 
Side 

Anterior 
Side 
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Results: Contact Pressure 

Positive mismatch Ideal fit Negative mismatch 

θ stem > θ head θ stem < θ head θ stem = θ head  

Posterior 
Side 

Anterior 
Side 
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Area of evident fretting fatigue (% of total contact area): 
 

Positive mismatch Ideal fit Negative mismatch 

0.13% 1.01% 0.29% 

Results: Areas of Fretting Fatigue 

Posterior 
Side 

Anterior 
Side 
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Results (Summary) 

 Under walking load (gait cycle) conditions for particular modular 
implant configuration: 
 The ‘ideal fit’ is not actually the best design to minimise 

fretting fatigue as would have been thought 
 
 Negative misalignments give rise to larger observed fretting 

fatigue 
 

 A slight positive misalignment minimises fretting fatigue, for this 
particular modular implant configuration 
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Discussion 

 Only 3 variations in stem misalignment assessed 
 No sensitivity analysis was performed on magnitude of 

misalignment 
 

 Only assessed one a particular modular implant configuration & 
design 
 Additional design & or geometric parameters may play a 

larger role in determining magnitude of fretting fatigue 
 

 Only assessed two specific materials, CoCr (head) against 
Titanium Alloy (Stem) 
 The results may change with material change 
 Softer head vs. harder stem 
 Harder stem vs. softer head  
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Conclusion 

 A Fretting fatigue model has been implemented in COMSOL 
 
 Validation of fretting fatigue models vs. physical tests is on going 

 
 More work needs to be done to fully describe the fretting fatigue 

characteristics of misaligned implants, in terms of 
 Misalignment sensitivity 
 Material variation (Soft on hard vs. hard on soft) 
 Additional designs & or geometric characteristics 
 Surface finishes, roughness & coatings may change results 
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