

Thomas Christen, ABB Corporate Research, ABB Switzerland Ltd

Nonstandard High-Voltage Electric Insulation Models

Excerpt from the Proceedings of the 2012 COMSOL Conference in Milan

Simulation for Insulation Design

- □ <u>Standard procedure (usually AC)</u>
 - 1. Calculate electric field (test conditions, ...)

$$\nabla \cdot \left(\varepsilon_r \varepsilon_0 \nabla \phi \right) = 0$$

- 2. Check for dielectric withstand
 - Electric breakdown (E < breakdown field)
 - Thermal runaway (electro-thermal simulation)
- Nonstandard procedure for
 - Direct Current (DC) simulations

$$-\nabla \cdot (\varepsilon_r \varepsilon_0 \nabla \phi) = \rho$$
$$\partial_t \rho + \nabla \cdot \boldsymbol{j} = 0$$

E-Field simulation including electric breakdown

equation for charge carrier avalanche \rightarrow sparks etc.

Simulation requirements for fundamental R&D

- Quick & Computational resource friendly
 - Parameter studies
 - Various different (test) scenarios

- Flexible with respect to physics /modeling
 - Bulk (PDEs, ODEs, ...)
 - $_{\circ}$ Insulator interfaces $\,$ / surfaces
 - Boundary conditions (electric contacts, ...)
 - $_{\circ}$ Multi-physics

ENCE

Example: Space Charge Injection in Insulators

- Insulator bulk equations (no intrinsic carriers)
 - $-\nabla \cdot (\varepsilon_r \varepsilon_0 \nabla \phi) = \rho$ * Poisson $\partial_t \rho + \nabla \cdot \mathbf{j} = 0$ Continuity
 - * Current density $j = |\rho| \mu(E) E D \nabla \rho$
 - \rightarrow strongly nonlinear

Physics strongly determined by boundary condition

Inception field

E

Comsol Model

□ Plate-plate geometry

Current-time transient after switching on a DC voltage

□ Plate-plate geometry

Steady-state current-voltage characteristics: three regions

Non-uniform space charge and electric field distributions

© ABB

□ Rod-plate geometry

Field limitation of spatial field enhancements

□ Voltage pulse

□ Injected space charge clouds at different times (in units of "time of

Example: Streamer Inception

□ Inception

□ Electron impact ionization avalanche growth if effective ionization coefficient $\alpha(E) > 0$

□ FEM simulation: Approximation with 2nd order PDE $D\Delta \phi - \mathbf{v} \cdot \nabla \phi = \alpha(E)\Theta(\alpha)$

- o D small (singular perturbation)
- Boundary conditions
 - Streamer inception electrodes
 - Counter electrodes

$$\mathbf{n} \cdot \nabla \phi = -\alpha \, \Theta(\alpha) \\ \phi = 0$$

Example: Streamer Inception

□ Inception

Main Idea

Reduce the integral along field-lines of a vector field to a first order PDE

□ FEM simulation: Approximation with 2nd order PDE

$$D\Delta\phi - \mathbf{v} \cdot \nabla\phi = \boldsymbol{\alpha}(E)\Theta(\alpha)$$

- o D small (singular perturbation)
- Boundary conditions
 - Streamer inception electrodes
 - Counter electrodes

$$\mathbf{n} \cdot \nabla \phi = -\alpha \, \Theta(\alpha) \\ \phi = 0$$

Example: Streamer Inception and Propagation

□ Plug-plate

- □ Simulation Procedure:
- 1. E-Field
- 2. ϕ Field
- 3. Particle Tracing

Conclusion

Modeling flexibility of a simulation tool is crucial for basic R&D

Power and productivity for a better world[™]

