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Abstract: The dynamic behavior of cable 
supported bridges subjected to moving loads and 
affected by corrosion mechanisms in the cable 
suspension system is investigated. A generalized 
formulation based on the finite element method 
is developed, in which both in-plane and out-of 
plane deformation modes have been considered 
in the dynamic behavior of the bridge. Moreover, 
local vibration effects of the cable elements and 
large deformations are taken into account by 
reproducing geometric non-linearities involved 
in the cable system, the girder and pylons. The 
cable corrosion mechanisms, which essentially 
determine a reduction of the cable stiffness, are 
formulated consistently with a theoretical 
formulation based on Continuous Damage 
Mechanics (CDM). Numerical results in terms of 
time histories of typical kinematic and stress 
design variables for cable-stayed and suspension 
bridges are reported by means of comparisons 
between damaged and undamaged bridge 
configurations. 
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Finite Element Method, CDM. 
 
1. Introduction 
 

The dynamic behavior of cable supported 
bridges subjected to moving loads and affected 
by corrosion mechanisms in the cable suspension 
system is investigated.  

Cable supported bridges strongly depend on 
the cable system, which can be defined 
according with suspension or cable-stayed cable 
configurations. The former comprises a parabolic 
profile of the main cable and vertical hanger 
cables connecting the stiffening girder to the 
main cable; the latter consists of straight cables 
connecting the stiffening girder to the pylon [1]. 
Both cable systems are frequently employed in 
the context of long spans, leading to slender and 
flexible structures, in which, typically, the dead 
loads are comparable with those involved in the 
live load configuration.  

During their life, cable supported bridges are 
affected by several damage phenomena, which 
produce a reduction of the mechanical properties 
of the bridge constituents. As a matter of fact, the 
cable system usually consists of high tensile 
galvanized steel wires, which are frequently 
exposed to severe environmental conditions such 
as marine environment, rain, pollution, ect. Such 
phenomena lead to degradation effects, which 
may cause a reduction of the stiffness properties 
or, in extreme cases, the complete failure of a 
single or multiple cable elements [2 – 3].  

Old suspension bridges often suffer from the 
onset of deteriorated cables. Actually, 
experimental observations on existing bridge 
structures have shown the presence of damage 
mechanisms on the steel wires of the main-cable, 
which typically are affected by severe corrosion 
phenomena or, in the extreme case, by the 
complete fracture of the wires [4]. Furthermore, 
the vibrations induced by moving loads can 
cause the deterioration of the cables according to 
the known phenomenon of the "fretting-fatigue 
corrosion". Therefore, corrosion mechanisms 
involve a gradual loss of structural performance 
as well as of the structural security making the 
structure more sensitive to the effects of the 
moving load.  

To this end, it is necessary for design 
purposes to check the safety of the structure and 
its robustness  against corrosion mechanisms 
under the action of moving loads. 

A brief literature review reveals that the 
problem of moving loads for cable supported 
bridges was mainly analyzed for undamaged 
bridge structures. In this framework, the bridge 
behavior was analyzed by means of finite 
element models, in which local vibration effects 
of the cable elements were taken properly into 
account [5 - 6]. In particular, for slender and 
flexible structures several studies on supported 
bridges have denoted that it is necessary to take 
into account the influence of the external mass 
and its motion and thus introducing an accurate 
description of the inertial forces arising from the 
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bridge deformations and moving load kinematic. 
At this aim, Bruno et al. [7–9] have proved that 
the external loads were able to produce high 
amplifications of the main bridge kinematic and 
stress design parameters, leading to non-standard 
excitation modes in the bridge structure.  

On the other hand, few studies were made on 
the influence of cable corrosion mechanisms on 
the dynamic behavior of bridges. As a matter of 
fact, Lepidi et all. [10] have analyzed from the 
static and dynamic points of view, the effect of 
the damage mechanisms on single cable element 
in terms of intensity, extent and position. 
Starting from Lepidi’s model for damaged 
suspended cables, Materazzi and Ubertini [11] 
have presented a mathematical formulation to 
analyze the vertical vibration of suspension 
bridges with a damage in the main cables. In this 
framework, a parametric analysis with the 
purpose of investigating the sensitivity of natural 
frequencies and mode shapes to damage is 
proposed. However, further investigations to 
verify code prescriptions and to quantify the 
influence on the bridge behavior of the dynamic 
excitation produced by the damage 
characteristics of the cable system are much 
required.  

The purpose of this study is to investigate the 
influence on cable supported bridge structures of 
corrosion mechanisms in the cable-stayed and 
suspension systems. To this end, a parametric 
study for cable-stayed and suspension bridges 
was considered to analyze the dynamic behavior 
of both damaged and undamaged bridge 
structures under the application of moving loads. 
  
2. Theoretical Formulation 

 
The dynamic behavior of cable supported 

bridges was analyzed by using a generalized 
formulation based on the finite element method 
in which both in-plane and out-of plane 
deformation modes have been accounted for. 
Moreover, local vibrations of the cable elements 
was taken into account by reproducing the non-
linearities involved in the cable-sag effect in the 
cable system as well as large deformations in the 
girder and the pylons. 
 
 
 
 

2.1 Cable formulation 
 

The cable element is based on a 3D nonlinear 
geometric formulation. The theoretical 
formulation is consistent with large deformation 
theory based on Green-Lagrange’s strain 
measure and the second Piola-Kirchhoff stress, 
whereas the material behavior is assumed to be 
linearly elastic. The weak form can be derived by 
using the principle of D’Alembert as follows: 
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where ∑(.) involves a summation over the 
elements introduced to discretize the geometry of 
the cable, the dot represents the time derivative 
with respect to the time, u


 is the displacement 

vector, µc is the mass per unit volume cable 
density, gc is the self-weight load of the cable 
and F is reaction force vector. 
 
2.1.1 Initial configuration under dead loads 
 

The cable behavior is mostly influenced by 
the preexisting stress and strain status so the 
initial configuration under the dead loading must 
be identified. The values of the cable tensions 
were obtained enforcing the deck to stay in the 
undeformed configuration during the application 
of the dead loads, by means of the following 
conditions [1]: 
 0G

zu C X+ ⋅ =
 

 (2) 
 
where uG

z is a vector containing the self-weight 
displacements in absence of the pre-stressing 
forces, X


 is the internal stress in the cable 

system, C is the flexibility matrix of the 
structure.  

It is worth noting that since the structure is 
characterized by a nonlinear behavior, Eq. (2) 
corresponds to a nonlinear equation system, 
whose solution requires a numerical procedure to 
be calculated. To this end, an incremental 
iterative procedure to compute the internal force 
vector, by means of an optimization solving 
problem have been developed. 
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2. Girder formulation 
 

The girder and tower are described by 3D 
geometric nonlinear beam elements, based on an 
Euler-Bernoulli (EB) formulation and Green-
Lagrange’s strain assumption. The girder is 
connected with the cable elements at the end 
points of the cross-section on the yz plane. With 
reference to Fig.1, the displacements of the 
cross-section are expressed by the following 
relationships. 

 
 ,   ,  x y zx z y z xu u y u u u u yϑ ϑ= − = = +  (3) 
 
where (ux, uy, uz) and (θx, θy, θz) are the 
displacements and rotation fields of the centroid 
axis of the girder with respect to the global 
reference system, respectively. The external 
loads are assumed to proceed, with constant 
speed c from left to right along the bridge 
development and are supposed to be located, 
eccentrically with respect to the geometric axis 

of the girder. In the proposed modeling the 
moving load is considered to be perfectly 
connected to the girder profile, neglecting any 
frictional forces of the suspension system of the 
external loads or the roughness effects produced 
by girder profile. As a result, the cinematic 
parameters of the moving system coincided with 
the ones defined by the girder. This assumption 
is quite consistent in the framework of cable 
supported bridges with long spans, in which, 
typically, such interaction forces produced by 
localized dynamic effects are negligible with 
respect to the global bridge vibration. However, 
the interaction between moving loads and bridge 
motion was considered introducing non-standard 
contributions arising from Coriolis and 
centripetal inertial forces, which are, mainly, 
produced by the coupling behavior between 
moving system and bridge deformations. In 
particular, with respect to a fixed reference 
system, velocity and acceleration functions of the 
moving system were evaluated by means of a 
Eulerian description, as: 

Figure 1. Structural model of the bridge, damage scenarios and bridge properties utilized in the results. 

L= 1050 m;  l= 350 m;  Hsp= 168 m;  Hst= 210 m;  b= 10 m;  Δst= 10 m;  Δsp= 20 m;  Lp= 1050 m;  e= 5 m;   
g= 30000 kg/m; A= 9.54 m2;  σg= 3.58E8 Pa;  Am= 0.488 m2;  Ah= 0.0106 m2;  As0= 0.248 m2;  As= g Δst/(σg sinα);  
Iy= 3.057 m4;  Iz= 113.11 m4;  Jt= 1.0332 m4;  p= 30000 kg/m;  E= 2.06E11 Pa;  Kp= 7357500 N/m; 

(a) 

(b) 

(c) 

(d) 
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Moreover, the moving system was supposed to 
be described by equivalent distributed loads and 
masses acting over the girder profile.  

With respect to a moving reference system, 
from the left end of the bridge, and to an 
eccentricity distance e of the moving load with 
respect to the centroid of the cross section, the 
mass and loading functions during the external 
load advance, can be written by the following 
expressions: 
 ( ) ( )1 1px L ct ct xH Hρ λ= + − −  (5) 

 ( ) ( )pf ct X X L ctpH H= − + −  (6) 

 ( ) ( )0 0 1 1px L ct ct xH Hρ λ= + − −  (7) 

 ( ) ( )1 1 pm e ct x x L ctp H H= ⋅ − + −  (8) 
 
where H(.) is the Heaviside function, Lp is the 
length of the moving loads, x1 is the referential 
coordinate located at the left end girder cross 
section, (λ, p) are the per unit length mass and 
self-weight loads, respectively, and λ0 represents 
the torsional distributed polar mass moment 
produced by the external loading. The dynamic 
equilibrium equations were derived in explicit 
form, consistently with a variational approach, in 
which both internal and external works were 
evaluated by means of the following 
relationship: 

( )

( )
0

22

n x x y y t x
c

G
c c c

z z z z
c c

z z
c

N M M M dL

u udL u udL g udL

F udL u cu c u u dL

u u dL

δε δχ δχ δθ

µ δ µ δ δ

δ ρ δ

ρ δ

+ + + +

+ = +

′′+ + + +

∑∫

∑ ∑ ∑∫ ∫ ∫

∑ ∑∫

∑∫

 
    

 
 

 

 (9) 

where (N, Mx, My, Mt) are the internal stress 
resultants, (εn, χx, χy, θ) are the corresponding 
generalized beam strains, (µ, µ0) are mass 
moment and polar mass moment of the girder, gc 
is the self-weight load of the girder and F is 
reaction force vector. 
 

 
2.3 Corrosion Mechanism Formulation 
 

With reference to the structural bridge 
scheme reported in Fig.1, it was assumed that the 
cable system was composed of undamaged 
elements and a fixed number of elements which 
were affected by an internal cable damage 
mechanism. The cable corrosion mechanism was 
formulated, consistently with a Continuous 
Damage Mechanics approach in which cable 
deterioration results in the reduction in cable 
cross-sectional area [12-13].  

Therefore, denoting with A0 the cross-
sectional area of the cable in a perfect state, and 
with A* the reduced area due to cable corrosion, 
the effective area Aeff  is defined as: 

 
 *

0effA A A= −  (10) 
 
Then the corresponding corrosion ratio can be 
defined in the form: 

 
*

0

0 0

effA A A
D

A A
−

= =  (11) 

 
Consistently with CDM, the effective stress σeff 
is defined as the ratio between the tensile force 
(T) and the effective area: 

  eff
eff

T
A

=σ  (12) 

 
Since σA0 = σeffAeff and according to Eq. (11) we 
obtain: 

 
1eff D
σσ =
−

 (13) 

 
By introducing Lemaitre’s equivalent-strain 
principle, the following expression concerning 
the stresses in the corroded or the effective 
configurations can be derived: (Fig. 2). 
  

(1 )
eff

effE E D E
σσ σε = = =

−   
(14) 

 
Finally, on the basis of Eq. (13) and Eq.(14), the 
effective modulus of elasticity Eeff for corroded 
cable can be defined by the following 
relationship:  
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3. Finite element implementation 
 

Governing equations given by Eq. (1) and 
Eq. (9) introduce a nonlinear set of equations, 
which were solved numerically, using  
COMSOL Multiphysics TM version 4.2a. Fig. 2. 
Finite element expressions were written starting 
from the weak form, introducing isoparametric 
shape functions (ζi, ξi) to represent cable and 
girder variables as: 
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Where n represents the number of nodes of the 
master finite element. In particular, Lagrange 
interpolation functions were adopted to analyze 
the behavior of the cable system, whereas for 
girder elements based on EB formulation Hermit 
cubic interpolation functions were employed.  
 Substituting Eq. (16) in the governing 
equations, given by Eq. (1) and Eq. (9), the 
following discrete equilibrium equations were 
obtained: 
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where Mi is the mass matrix, K is the stiffness 
matrix, Pi is the external load vector and (N1

i, 
N2

i, N3
i) are non-standard matrix obtained from 

the coupling effects produced by the interaction 
forces between moving loads and bridge motion.  
In order to solve the nonlinear algebraic 
equations an implicit time integration scheme 
based on a variable step-size backward 
differentiation formula (BDF) was adopted. 
Moreover, during the time integration, due to the 
fast speeds of the moving loads, a small time 
step size was utilized, which typically, no more 
than 1/10 of the fundamental period of vibration 
of the structure. 
 
4. Numerical results and conclusions 
 

Results are presented for cable supported 
bridges based on both suspension and cable-
stayed configurations, adopting similar 
properties for the main constituents of the bridge 
structures, i.e. girder, cable system and pylons.  
Mechanical characteristics concerning cable-
stayed and suspension bridges, reported in Fig.1, 
are opportunely selected consistently to typical 
values utilized in several bridge applications and 
mainly derived from both structural and 
economic reasons.  

The analyses are reported for bridge 
structures with different damage mechanisms in 
the cable system Fig.1. At first, the effect of the 
damage mechanisms is analyzed in the 
suspension bridge, in which two different 
damage scenarios, with D=0.5, were considered 
(Fig.s 1a,1b). It is worth noting that the damage 
was assumed only in one of the two cables 
planes, precisely on the side where the load runs. 
Furthermore, the analyzes were carried out under 
the assumption that corrosion mechanisms were 

Figure 2. Suspended bridge: Comsol Multiphysics 4.2a model 
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present before the transit of the moving load.  
The presence of corroded cables involves a 

variation of the zero configuration obtained 
without damage. The results are presented in 
terms of time histories of typical cinematic and 
stress design variables, comparing the dynamic 
behavior between cable-stayed bridges and 
suspension bridges in the cases of damage and 
undamaged bridge configurations.  

In order to study the influence of the speed of 
the moving load on the bridge behavior, the 
hypothesized damage scenarios were analyzed 
for two different reference speeds.  

For the sake of brevity, results are presented 
in terms of the midspan vertical displacement 
only. Results concerning the behavior of 
suspension bridges, in terms of time histories of 
the midspan displacement are reported in Fig 3. 
 

 
Figure 3. Suspended bridge: Time History of the 
midspan displacement 
 
 The analyses show that bridge deformations are 
quite dependent for the assumed damage 
scenario. As a matter of fact, the effects 
concerning the presence of damage produce with 
respect to the undamaged bridge configuration a 
maximum percentage increment of the maximum 
displacement equal to 26.66.  In the framework 
of cable-stayed bridges, the analyses, reported in 
Fig.s 4,5, denote that the presence of a partial 
damage in the anchor cable is able to produce 
high amplifications of the bridge displacements 
with respect to the undamaged configuration.  

As a matter of fact, the observed maximum 
percentage increment of the midspan 
displacements are equal to 67.51 (Tab. 2) 
 

 
Figure 4. Cable-stayed bridges: Time History of the 
midspan displacement – c = 60 m/s  
 

 UD D1 D2 % Amp. 
D1 

% Amp. 
D2 

Hshaped 5.13 5.67 6.92 10.45 34.70 
Ashaped 5.16 5.72 7.05 10.91 36.66 

Table 1. Cable-stayed bridges: Maximum values of 
the midspan displacement and amplification 
percentage – c = 60 m/s  
 

 
Figure 5. Cable-stayed bridges: Time History of the 
midspan displacement – c = 120 m/s  
 

 UD D1 D2 % Amp. 
D1 

% Amp. 
D2 

Hshaped 6.63 8.09 11.1 22.15 67.51 
Ashaped 6.82 8.16 9.64 19.80 41.43 

Table 2. Cable-stayed bridges: Maximum values of 
the midspan displacement and amplification 
percentage – c = 120 m/s  
Finally, in Fig.s 6,7, results concerning both 
cable-stayed and suspension bridge scheme 
reported in terms of damage scenarios, bridge 
characteristics and moving loads transit speeds. 
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Figure 6. Suspended bridge: Maximum vertical 
midspan displacement - influence of the speed  
 

 
Figure 7. Cable-stayed bridge: Maximum vertical 
midspan displacement - influence of the speed  
 

The comparison show how cable-stayed 
bridges are much more affected by the presence 
of the damage and the transit speed of the 
moving loads, since larger values of the bridge  
displacements with respect to the undamaged 
configuration are observed.  
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