

# Wrocław University of Technology



# Design of tunable metamaterial operating near 90 GHz

Karol Tarnowski, Włodzimierz Salejda Institute of Physics Wroclaw University of Technology

> COMSOL CONFERENCE EUROPE 2012



#### **Outline**

- Purpose
- Initial design and test of numerical procedure based on FEM
- Road to fulfil requirements
- Final design
- Summary





### Purpose

- Tunable metamaterial cell
- Nematic liquid crystal
- Operation in 90 GHz range







[1] R. Liu, T. J. Cui, D. Huang, B. Zhao, D. R. Smith, "Description and explanation of electromagnetic behaviors in artificial metamaterials based on effective medium theory", *Physical Review E*, vol. 76, 026606 (2007)







COMSOL CONFERENCE EUROPE 2012 05/25





- SRR placed on a bottom surface
- TW placed on a top surface
- a = 2.5 mm, b = e = 0.2 mm, c = 0.14 mm,
   d = 1.1 mm, f = 2.2 mm, g = 0.3 mm







- metallic elements were modelled as PEC placed on bottom and top surfaces of dielectric plate

  COMSOL
- plate thickness 0.25 mm
- plate permittivity  $\varepsilon = 4.4 0.001i$

07/25

**NFERENCE** 





Transmission and reflection coefficients ( $S_{21}$ ,  $S_{11}$ ) calculated with Comsol Multiphysics represented in Cartesian and polar coordinate systems







Comparison of impedances presented in [1] (left hand side) and retrived (right hand side)

[2] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials", *Physical Review E*, vol. 70, 016608 (2004)







Comparison of phase advance presented in [1] (left hand side) and retrived (right hand side)

[2] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials", *Physical Review E*, vol. 70, 016608 (2004)







Comparison of permittivity presented in [1] (left hand side) and retrived (right hand side)

[2] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials", *Physical Review E*, vol. 70, 016608 (2004)









Comparison of permeability presented in [1] (left hand side) and retrived (right hand side)

[2] X. Chen, T. M. Grzegorczyk, B.-I. Wu, J. Pacheco, J. A. Kong, "Robust method to retrieve the constitutive effective parameters of metamaterials", *Physical Review E*, vol. 70, 016608 (2004)





#### Introduction of nematic liquid crystal



Nematic liquid crystal placed between two quartz plates





#### **Additional TW**



Additional thin wires introduced for IPS (in-plane switching)





# Subsequent changes

- Scaling in Z-direction to fulfil technological requirements
- Scaling in XY-plane to shift resonance to desired spectral range
- Accounting losses in metallic elements
- Different NLC parameters







Nematic liquid crystal placed between two quartz plates







COMSOL CONFERENCE EUROPE 2012

17/25







• dimensions: a = 250  $\mu$ m, b = e = 20  $\mu$ m, c = 14  $\mu$ m, d = 110  $\mu$ m, f = 220  $\mu$ m, g = 30  $\mu$ m





#### Nematic liquid crystal permittivity:

$$- \varepsilon_{11} = 4.004336 \cdot (1-4.44 \cdot 10^{-2}i),$$

$$- \varepsilon_1 = 2.566052 \cdot (1-2.65 \cdot 10^{-2}i).$$

#### Possible orientations:

- along X-axis 
$$(\varepsilon_x = \varepsilon_{||}, \varepsilon_v = \varepsilon_{\perp}, \varepsilon_z = \varepsilon_{\perp})$$
,

- along Y-axis (
$$\varepsilon_x = \varepsilon_{\perp}$$
,  $\varepsilon_v = \varepsilon_{||}$ ,  $\varepsilon_z = \varepsilon_{\perp}$ ),

- along Z-axis (
$$\varepsilon_x = \varepsilon_{\perp}$$
,  $\varepsilon_y = \varepsilon_{\perp}$ ,  $\varepsilon_z = \varepsilon_{||}$ )







Transmission and reflection coefficients ( $S_{21}$ ,  $S_{11}$ ) calculated with Comsol Multiphysics represented in Cartesian and polar coordinate systems







Effective refractive index and impedance retrived from  $S_{21}$ ,  $S_{11}$ .







Effective permittivity and permeability retrived from  $S_{21}$ ,  $S_{11}$ .







$$\frac{1,937-1,162}{1,162}\approx 67\%$$

$$\frac{84,5-83,0}{83,0}\approx 1,8\%$$





### Summary

- Initial design and test of numerical procedure based on FEM
- Road to fulfil requirements
- Final design





### Acknowledgments

#### Colaborators:

- J. Parka, P. Nyga, R. Kowerdziej (Military University of Technology, Warsaw)
- B. Salski, M. Olszewska (Warsaw Technical University, Warsaw)

#### Funding

- Polish Ministry of Science and Higher Education, grant no. O R00 0144 12





# Thank you for your attention