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Abstract

Thermal Barrier Coatings (TBCs) have long been used in industry for high temperature applications.
Inclusion of vertical cracks in TBCs is an active research area (Figure 1) [1-5]. Traditional plasma
spray coatings have randomly oriented cracks due to rapid solidification during deposition (Figure
1a) whereas new technologies produce vertically cracked coatings (Figure 1b&c). Due to the
unavoidable coefficient of thermal expansion (CTE) mismatch between the coatings and the
substrates, interfacial stress arises when the system undergoes temperature change. Vertical cracks
provide strain tolerance within the top layer, therefore providing extra mechanical stability. Some
control over crack geometries has been demonstrated [3-4]. The purposes of this simulation are to
understand how crack geometry affects coating performance and identify optimizable design
parameters. Key parameters are crack-to-crack distance, crack width, and crack depth. COMSOL
"Thermal Stress" and "Heat Transfer in Porous Media" modules are employed in modeling a two-
dimensional system. A 2800 pum SiC base representing a turbine blade section is covered with a 10
Pm environmental barrier coating (EBC) of mullite (3A120322Si02), and a 200 um TBC of
yttria-stabilized zirconia (Y SZ). Consistent with experimental observations from our group and
others [3-4], vertical cracks are placed in the YSZ at varying crack density, width, and depth. A
steady working temperature is assigned to the SiC with the blade cooling by external means.
External forced convection is applied to represent surrounding combustion gases. Steady-state stress,
strain and temperature are evaluated throughout the profile. Stress minimization throughout the
TBC/EBC coatings is the primary mechanism to interpret optimized crack characteristics from this
model. Preliminary results demonstrate a temperature diagram (Figure 2) through the
TBC/EBC/base consistent with published results (Figure 3). The cross-sectional stress profile
(Figure 4) shows that stress peaks at the EBC/base interface. It is also evident that the stress slightly
decreases within the TBC coating, and dramatically lessens where vertical cracks begin. This
significant stress drop demonstrates the mechanical stress relief capability of vertical cracks.
Variation of crack spacing from 80 [im to 110 pum showed that interface stresses decrease as crack
density increases. Complete results will include dependence of stress, strain, and temperature
profiles on an expanded crack density range as well as several homogenous and heterogeneous
crack depths and widths. Influence of crack shape such as tip geometry will also be explored.
Vertical cracks are reported in TBC/EBC systems and experimentally observed to increase coating
tolerance to thermal stress. However, an ideal crack density and depth are not well understood.



Here, COMSOL is utilized to target crack characteristics for minimizing stresses in a TBC/EBC
system. Results of this simulation have active industrial relevance.
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Figure 1: Comparison of (a) traditional plasma sprayed TBC (b&c) TBC with vertical cracks (d)
EB-PVD TBC [1].
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Figure 2: Surface temperature plot of model at steady-state analysis.
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Figure 3: Cross-sectional view of a TBC over turbine blade, the blue diagram shows the
temperature reduction by TBC [5].
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Figure 4: Surface stress as a function of distance from hot gas interface.



