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Abstract: The increasing energy demand calls 
for advances in technology which translate into 
more accurate and complex simulations of 
physical problems.  We are trying to understand 
volumetric rock damage, which is essential to 
understanding the geomechanics of oil and gas 
reservoirs.  The fragile microstructure of some 
rocks makes it difficult to predict the propagation 
of damage and fracture in these rocks, therefore a 
mathematical model is required to predict the 
fracture mechanisms in such materials.  The 
governing equation of rock damage is a 
nonlinear parabolic partial differential equation 
(PDE). The physics of the problem imposes a 
number of complexities that should be handled 
numerically.  In this paper, we present the results 
we obtained using COMSOL 3.5a and we show 
how a complicated problem can be solved using 
the finite element method incorporated in 
COMSOL.  The results could be used in similar 
geomechanical and structural damage problems 
such as failure and rupture of Steel, Aluminum, 
Concrete, etc.  Moreover, the pattern of rock 
damage in oil and gas reservoirs is of great 
significance in recovery of hydrocarbon in 
petroleum engineering.  
 
Keywords: Volumetric rock damage, Damage 
diffusion, Reservoir geo-mechanics, Brittle 
fracture.  
 
1. Introduction 
 

Solid mechanics and strength of materials are 
two of the oldest engineering mechanics 
problems.  The fundamental works of Galileo [1] 
and Griffith [2] were the early steps in predicting 
the fracture strength of materials using an energy 
balance approach. In the “Two New Sciences” 
(1638), Galileo asked the question how long an 
object under load can last before it fails due to 
damage. This question was much deeper and 
very different than those asked by Robert Hooke 

in 1660, when he discovered the laws of 
elasticity. In petroleum engineering, the problem 
of rock fracturing is one of the problems which 
have been of interest for the past few decades. 
However, rock fractures are more important now 
due to demand of production from low 
permeability reservoir rocks such as diatomite 
oilfield or gas shale [3]. Continuum damage 
mechanics (CDM) is a branch of solid mechanics 
which deals with the formation and coalescence 
of micro-fractures of various scales, called in 
general, micro-defects. Micro-defects are created 
by mechanical or environmental loads. These 
loads result in deterioration of material and bond 
brakeage mechanisms, leading to the loss of 
material stiffness. Damage mechanic looks into 
the formation of damage. As the damage 
propagates, the material body becomes discrete, 
however to preserve the continuity of material so 
that the continuum mechanics be applicable, the 
other branch of mechanics—fracture mechanics, 
is invoked.  Fracture mechanics takes the effects 
of micro-cracks as discrete defects, into a 
continuum body of intact material.  In this article 
we look at damage problem from a 
thermodynamic standpoint in which bond 
breakage mechanism leads to propagation of 
damage.  

 
1.1 Definition of damage parameter 
 
As a rock specimen undergoes external load, the 
chemical bonds in the microstructure of rock 
undergo excitation due to a thermodynamic 
process.  This excitation makes the energy given 
to rock matrix go beyond the activation energy 
of bonds, therefore; bonds start to break.  This 
breakage of bonds is called rock damage.  In 
other words, damage at a point in rock can be 
physically interpreted as the properly averaged 
fraction of broken bonds inside microstructural 
elements of the body.  Once the bonds start 
getting broken, their load carrying capacity 
becomes zero, hence the load transfer could only 

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston



 

continue through intact bonds.  This reduction of 
load transferring agents from cross sectional area 
S to Sr can be used to define damage parameter 
as; 
 
 

rS S
S




  (1) 

 
Sr in Equation (1) is the portion of the total cross 
section S, which remains intact and can transfer 
load as shown in Figure 1.  This is the definition 
used in damage mechanics. 
 

 
 
Figure 1. Macroscopic interpretation of damage 
 
Alternatively, some damage mechanics books, 
define a continuity factor as: 
 

   (2) 
 
so that in original pristine material, damage 
parameter is 0 and continuity factor is 1.  
Fracture then corresponds to damage parameter 
equal to 1 or continuity factor of 0.  In practice, 
damage parameter can never attain the value of 
1.0 and failure occurs earlier, at lower values 
1, which is obtained through analysis of 
localization [4, 5].  Therefore, the actual stress 
that can be carried across the partially damaged 
cross section is r which is related to the bulk 
stress  and damage parameter  by Equation 
(3); 
 

(1 )r






 (3) 

 

Figure 1 shows the increase in the value of stress 
, at the damage zone in a bar under tension.  
The double-headed arrow along x direction 
indicates the direction of damage propagation 
which in the case shown here is perpendicular to 
the direction of load. 
  
1.2 Governing equation of rock damage 
 
Damage theory, originally developed by 
Kachanov [6, 7] and later extended to several 
areas of engineering and physics by many 
researchers including [8, 9] is based on simple 
ordinary differential equation of the form; 
 

1q
t

  


 (4) 

 
which governs the evolution of damage, where 
is the characteristic time and q is the damage 
accumulation term which is a dimensionless non-
negative number specified for a given material.  
Once q is replaced with the appropriate kinetic 
law, the rate of damage shown on the left-hand 
side of the Equation (4) can be obtained as; 
 

X,t ( ( )) ( )]f f
t
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In which f is an exponential function in the 
following form: 
 

0( ) (1 )exp( )
1

f 
 


 


  

and  is the damage diffusion parameter.  The 
positive sign in the right hand side of the 
equation indicates that the rate of damage has to 
remain non-negative (>0 or =0) during the 
numerical analysis.  This constraint is imposed 
by the physics of damage as a non-healing 
process.  We access the solution vector and 
manipulate the vector such that the rate of 
damage is always positive. We will explain the 
steps we took to modify the solution to assure a 
positive damage rate in this article. 0 is a 
constant which has to do with the stress level 
applied to rock.  In all analysis performed here, 
we use the constant value of 10 for 0. 
 
Notice that, the partial differential equation (5) 
presented here, is nonlinear parabolic PDE and 
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does not have an analytical solution, therefore; it 
has to be solved numerically.  Here our focus is 
on the COMSOL features we used, therefore; we 
try to focus on the method of solution and 
demonstrate the technics which we came up with 
to solve this PDE using COMSOL3.5a and 
present the results we obtained.  The derivation 
of this equation is beyond the scope of this paper 
and interested readers are recommended to see 
[10]. 
 
2. Description of the problem 
 
The damage parameter and governing equation 
are now defined; therefore we can outline the 
problem we wish to solve.  Given the initial 
distribution of damage in a domain we are 
interested in knowing how damage is propagated 
in rock.  The damage parameter or state variable 
changes with time and space.  Figure 2 shows the 
domain and boundary conditions of the problem. 
Vector n is the outward normal vector to the 
domain boundary at any point X.  Here, X is a 
vector and we use a bold font for it. The damage 
parameter is a scalar as defined in Figure 2 and it 
is equal to zero on the boundary.  
 

 
 

Figure 2. The time-dependent area  of damaged 
rock. 
 
The flux of damage is also zero across the 
boundary.  What we are interested to know is the 
distribution of damage over the domain as the 
time goes on.  It should be noted that, when 
material undergoes damage and failure, it 
ruptures.  The rupture or what is mathematically 
known as blow-up time is of great interest in our 
application. When blow-up occurs, damage 
parameter jumps to values greater than one and 

the solution to PDE ceases to exist.  Studying the 
convergence of solution becomes significant in 
this problem and we are presenting convergence 
plot as well.  
 
2.1 Set up the problem in COMSOL 
 
In order to solve Equation (5), we are utilizing 
the coefficient form of PDE in COMSOL.  The 
coefficient form is used to model a physics 
problem using a system of one or more time-
dependent partial differential equations and is in 
the form of Equation (6). 
 
 

2
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We assign coefficients of Equation (6) so it 
models Equation (5).  Here is the path we took to 
perform this: 
 
COMSOL 3.5a >Model Navigator>COMSOL 
Multiphysics>PDE Modes> PDE, Coefficient 
Form> Time-dependent analysis 
 
To assign the coefficients in Equation (6), we use 
zero for da,  and Equations (7) and (8) for f 
and c.  
 

0(1 )exp(
1

f u
u


 


 (7) 

 
and  

 
0 01c ( exp(
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u
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 
  

 


 
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Once the coefficient form is created, we can 
solve the transient problem.  The following 
sections give the details of analysis.  To have a 
better control on problem variables and post 
processing features, we use Livelink for 
MATLAB and part of the script which 
demonstrate our method is presented here. 
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2.2 Blow-up time 
 
As the solution time goes on, the onset of rupture 
is reached.  This time is when the solution ceases 
to exist and is called the life time of material also 
known as blow-up time in mathematics.  This is 
a known phenomenon in parabolic problems and 
occurs when the rate of input into the system is 
larger than that of output.  Here we first obtain 
the blow-up time for the case of =0, 
numerically, and call it the blow-up time for no 
damage diffusion case denoted by tbu0.  This is 
used as a reference time in all our analysis and it 
shows how long it takes for a rock sample under 
tensile load to fracture, if damage is accumulated 
in one point.  This is similar to the case of brittle 
material undergoing rupture.  In other words, 
when the tensile load is applied to a brittle rock, 
the damage is accumulated at one point and may 
not diffuse through rock because of brittle nature 
of material.  It goes without saying that, if the 
same load is applied to a ductile material, the life 
time or the time required to rupture is larger. 
 
Figure 3 shows the onset of blow-up for =0. It 
can be seen that the damage increases around the 
mid-point of the 1D bar under tension. 
  

 
 

Figure 3. Solution at the onset of blow-up to obtain 
the tbu0.  
 
The solution time for time steps 986 and 987 are 
8.36x10-11 and 8.37x10-11 respectively. These are 
dimensionless times relevant to the physics of 
this problem.  It can be seen that a minute change 
in time is required for the solution to blow-up.  
In other words, to get the exact time of rupture 
for material or to obtain the exact values of 
damage distribution right before the rupture, 
extremely small time steps are required.  In 

engineering applications, however; the level of 
accuracy that we have considered here is not 
required.  
 
2.3 Solution of PDE 
 
Figure 4 shows the distribution of damage with 
time for =0.06.  A quadratic function is used for 
the initial distribution of damage which is plotted 
in blue in Figure 4.   
 

 
Figure 4. Solution without taking into accounts 
the non-healing effect of damage.  
 
Since damage at any points in the domain of 
problem remains either constant or increases due 
to the non-healing nature of damage process, the 
solution has to be either constant or ever 
increasing. Therefore; to honor the physics of the 
problem, the solution vector has to be 
manipulated such that the rate of damage 
remains non-negative.  This is achieved by 
accessing the structure of solution and making 
modifications through scripting in MATLAB.   
 
2.3 Accessing the structure of solution 
through MATLAB 
 
Once the solution is completed successfully, 
nodal values and degrees of freedom are saved in 
“nodes” and “dofs” variables.  These can be 
accessed using the following commands (Lines 
1-4). 
 
 
1 nodes = xmeshinfo(fem,'out','nodes'); 
2 dofs=nodes.dofs; 
3 coords=nodes.coords; 
4 X=fem.sol.u; 
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Line (1), retrieves the nodal information from the 
finite element solution.  Line (2), retrieves the 
degree of freedom of nodes. Line (3), gives the 
coordinates of the degrees of freedom obtained 
in line (2).  Line (4), saves the solution vector in 
variable “X” for modifications. 
 
To eliminate the declining values of damage, the 
following lines (5-9) are used.  We use the 
values of the earlier step if the later step has 
lower values. 
 
5 for i=1:length(dofs) 
6      if (X(i,2))<(X(i,1)) 
7           X(i,2)=X(i,1); 
8      end 
9 end 
 
The result obtained after making these changes, 
is shown in Figure 5.   
 
 

Figure 5. Solution corrected for non-healing 
effect of damage.  
 
It can be seen that the damage distribution 
increases from the initial condition to about a 
uniform value of 0.72 as the time elapses. 
Besides, as we increased the damage diffusion 
parameter from =0 to =0.06, we noticed two 
modes of damage diffusion in rock. The former 
is a brittle failure as shown in Figure (3) in 
which damage accrues locally until failure at 
mid-point of the bar under tension and the latter 
is a ductile failure in which, damage initially 
diffuses toward boundaries and once the damage 
attains a uniform value along the bar, it starts 
increasing uniformly as shown in Figure (5).   

2.4 Convergence of solution 
 
Obtaining a solution using numerical methods, 
does not guarantee the accuracy of solution.  One 
more thing which should be done to make sure 
the results are correct, is the analysis of 
convergence.  Detailed convergence of solution 
in numerical methods can be studied in many 
books in numerical methods including [11]. 
We performed convergence studies in this 
problem and results are presented in Figure (6).  
This result exhibits the convergence of solution 
at mid-point of the bar where the maximum 
damage parameter is observed, takes place 
beyond 10,000 time steps.  This could not be 
predicted and the result obtained, should be 
incorporated in solution process. 
  

Figure 6. Convergence analysis.  
 
3. Conclusions 
 

1- In this paper we have used COMSOL 
Multiphysics and COMSOL Script to 
solve the transient rock damage problem. 
We have analyzed the non-healing 
process and incorporated the positive 
rate of damage in the finite element 
solution we obtained from COMSOL. 

2-  Numerical results indicate that there are 
two regimes of propagation depending 
on damage diffusion parameter  These 
are shown in Figures (3) and (5). 

3-  Due to the nonlinearity of damage 
problem, to obtain an accurate 
converged solution, time steps have to 
be very small.  Our numerical results 
indicate that for the number of time steps 
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beyond 10,000, the solution gets 
converged.  
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