

EM Simulation of a Low-Pass Filter Based on a Microstrip Defected Ground Structure Using COMSOL

J. E. Rayas-Sánchez⁽¹⁾, <u>J. Aguilar-Torrentera⁽¹⁾</u>, Z. Brito-Brito⁽¹⁾, J. C. Cervantes-González⁽²⁾ and C. A. López⁽²⁾

> (1) Department of Electronics, Systems and Informatics Instituto Tecnológico y de Estudios Superiores de Occidente (ITESO) Guadalajara, Mexico, 45090

> > (2) Intel Guadalajara Design Center Tlaquepaque, Jalisco, Mexico, 45600

> > > presented at

COMSOL Conference 2012, Boston, MA, October 4, 2012

Excerpt from the Proceedings of the 2012 COMSOL Conference in Boston

Outline

- Introduction
- Low-pass filter based on defected ground structure (DGS) units
- Fine and coarse model implementations
- EM responses
- Comparisons with measured data
- Fields and radiation losses
- Conclusions

- DGS units have been introduced as high-performance bandgap structures
- Enhanced DGS-based filters have been developed with very high attenuation and wide rejection bands
- However, radiation in DGS can be significant
- We implement fine and coarse models of a low-pass filter based on DGS units

Low-Pass Filter Based on DGS Units

COMSOL CONFERENCE

ITESO

STON

2012

(Ahn et. al. 2001)

Fine Model Implementation

- Lossy microstrips and ground plane
- Lossy dielectric

- High-mesh resolution
- 48, 542 elements in mesh
- 57min (100 frequency points)

Coarse Model Implementation

- Lossless microstrips and ground plane
- Lossless dielectric

- Low-mesh resolution
- 3,269 elements in mesh
- 53s (50 frequency points)

EM Responses

Comparison with Measured Data

D. Ahn, J. Park, C. Kim, J. Kim, Y. Qian, and T. Itoh, "A design of the low-pass filter using the novel microstrip defected ground structure," *IEEE Trans. Microwave Theory Tech.*, vol. 49, pp. 86-93, Jan. 2001.

COMSOL

2012

CONFERENCE

(Ahn et. al. 2001)

Electric Field, *E* (V/m)

Electric Field, *E* (V/m) (cont.)

Electric Field, *E* (V/m) (cont.)

 $S = E \times H$ (W/m²)

Radiation Loss

Conclusions

- We analyzed a low-pass filter based on DGS units
- Coarse and fine models were implemented
- The coarse model is a good representation of the fine model over certain frequency interval
- Coarse model reduces significantly simulation time (approximately 35 times faster)
- Fine model results are in excellent agreement with measured data
- Large radiation loss is the main disadvantage of the defected ground technique

Backup Slides

Low-Pass Filter (cont.)

g = 0.5 mmW = 2.4 mma = 5 mmb = 5 mm $W_c = 5 \text{ mm}$ $P_c = 6 \text{ mm}$ H = 0.787 mm

(Ahn et. al. 2001)

• Coarse and fine model meshing based on λ_a and λ_m

Parameter	Fine model	Coarse model
$\delta_{ ext{max-air,}}\delta_{ ext{max-sub}}$	$\lambda_{\rm a}/5, \lambda_{\rm m}/20$	$\lambda_{\rm a}/2, \lambda_{\rm m}/4$
$\delta_{\min\text{-}air,} \delta_{\min\text{-}sub}$	$\lambda_{\rm a}/50,\ \lambda_{\rm m}/200$	$\lambda_{\rm a}/20,\ \lambda_{\rm m}/40$
Number of elements in mesh	48,542	3,269
Number of degrees of freedom	398,890	21,922
Frequency points	100	50
Simulation time	57min 24s	53s

- FEM COMSOL solver (ver. 4.3)
- Platform Dell XPS8300 Intel Core i7-2600 at 3.4 GHz and 16 GB RAM

Fine Model Implementation

Coarse Model Implementation

COMSOL

BOSTON 2012

CONFERENCE

Power Loss Prediction

