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Many Factors are Influencing 

Development of Green Energy Solutions 

 Global warming 

 Rising fuel prices 

 Worldwide conflict 

 Increased environmental 
awareness  

 National and international 
economies 
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 Wind energy 
 Wind turbines and wind farms 

 Geothermal energy 
 Geothermal heating and cooling 

systems 

 Hydroelectric energy 
 Dams 

 Tidal energy 
 Underwater turbines 

 Kinetic motion systems 

 Solar energy 
 Photovoltaic solar panels 

 Thermal solar panels 

 Photovoltaic – thermal solar panels 

Numerous Green Energy Solutions Already 

Exist and are Continuously Being Optimized 
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PV/T Solar Panels are More Efficient than 

Conventional Solar Panels 

 Conventional photovoltaic panels 
produce electricity only  
 PV panels have low solar-to-electrical 

energy efficiencies 

 Solar energy not created into 
electricity is converted to heat 

 As PV panel temperature increases, 
the electrical efficiency decreases 

 PV/T solar panels produce 
electricity while capturing lost solar 
energy (heat) 
 Cooling fluid flows through heat 

exchanger attached to PV panel 

 Cools panel, increasing electrical 
efficiency  

 Fluid can be used for alternative 
application  
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An Analysis of a Novel PV/T Solar 

Panel was Performed Using COMSOL 
 PV/T panel consists of a rectangular 

reservoir mounted to the back of a 
conventional PV panel  

 PV cell properties 
 30.5 cm X 30.5 cm X 0.27 mm 

 Commercial grade monocrystalline PV 
cells (ηTref = 13%, βref = 0.54%) 

 Silicone thermal paste layer (~0.3 mm 
uniform thickness) to assist in 
conductive heat transfer between PV 
cells and reservoir 

 Aluminum reservoir walls (uniform 
thickness of 1 mm)  

 Material properties were included in 
COMSOL material library 
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An Analysis of a Novel PV/T Solar Panel 

was Performed Using COMSOL (cont.) 
 Twelve test cases were analyzed  

 Three different reservoir thicknesses 
○ 0.015 m 

○ 0.010 m 

○ 0.005 m 

 Four different water flow velocities 
○ 0.0002 m/s 

○ 0.001 m/s 

○ 0.005 m/s 

○ 0.01 m/s  
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 Constants 
 Water inlet temperature: 298 K 

 Solar irradiance: 1000 W/m2 

 Ambient temperature: 298 K 

 Wind Speed: 1 m/s 

 Assumptions 
 All solar irradiance that is not converted 

to electricity develops into heat 

 No dust or other agent on surface will 
affect solar energy absorptivity 

 No EVA encapsulating layer to decrease 
solar energy absorptivity 

 All evaluations considered to be steady-
state 

 

Normal mesh setting was used in 

Physics Controlled Mesh Sequence 

Setting (~ 15,500 elements) 

Re < 2300 

Laminar Flow  



 The “Conjugate Heat Transfer” physics module in 

COMSOL was used to evaluate the PV/T thermal model 
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An Analysis of a Novel PV/T Solar Panel 

was Performed Using COMSOL (cont.) 

0)(  Tk

 ambpvforcedcconv TTAhq  ,

 Conduction through PV cell surface to 
reservoir solved by conduction equation 

  

 Forced convection on top and bottom of 
PV/T panel solved by convection equation  

 

 Forced convection through the reservoir 
solved by conduction convection equation  

 

 Continuum and momentum equations were 
solved for flow  

 

 

 Long-wave radiation heat loss from the 
PV/T panel was also solved 

 
 



 The electrical efficiency as a function of: 

○ Ambient temperature 

○ PV cell temperature 

○ Thermal coefficient of PV cell 

○ PV cell reference efficiency 

 

 
 The amount of solar energy that was 

developed into heat as a function of: 

○ PV/T electrical efficiency  

○ Solar irradiance 

 

 User created variables were evaluated in COMSOL at each 
simulation time-step 
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An Analysis of a Novel PV/T Solar Panel 

was Performed Using COMSOL (cont.) 

hth =
Ewater

Ein

 The thermal efficiency as a function of:  

○ Heat energy carried away by water  

○ Total energy into the PV/T panel 

 

 
 The total efficiency of the PV/T panel as a 

function of: 

○ Energy created into electrical energy 

○ Heat carried away by the coolant water 

○ Total energy into the PV/T system 

 



 2-D laminar flow profiles 

were plotted to show 

flow characteristics 
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An Analysis of a Novel PV/T Solar Panel 

was Performed Using COMSOL (cont.) 

	

 2D surface plots of 
temperature were 
created to show heat 
distribution profiles in the 
PV/T solar panel  

	
Flow Thk. = 0.015 m 

Flow Vel. = 0.0002 m/s 



Higher Flow Velocity and Smaller Flow Thickness 

Yield Lower PV/T Surface Temperatures and 

Improved Electrical Efficiency 
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Large Flow Thicknesses and High Flow Velocities 

Resulted in Highest PV/T Panel Efficiencies  
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Conclusions 
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 PV/T system lineups with the highest recorded total efficiencies 
may not be the most practical  
 Very low temperature change from inlet to outlet of PV/T panel provides no 

real use for practical applications 

 Higher coolant water flow rates will require bigger pumps for large arrays, 
negating electrical efficiency gains 

 Total efficiencies unrealistic due to simplified evaluation 
assumptions 
 Conservative to assume that all lost solar energy is developed into heat 

 Not all solar energy is of correct wavelength for a given PV cell to absorb 

 An EVA encapsulating layer on PV cell is typically applied to prevent 
damage, which contributes to reduction in absorptivity 

 Different ambient and water inlet temperatures will affect efficiency 

 Future work 
 Test different ambient conditions 

 Investigate alternative cooling fluids and reservoir designs 


