

SisAl Pilot

Modelling of an ensemble averaged electric arc in a laboratory-scale electric arc furnace

Comsol European Conference: Munich, 25-27 October 2023

Sergey Semenov¹, Patrick Namy¹, Magnus Sievers², Bernd Friedrich²
 ¹: SIMTEC, 5 rue Felix Poulat, 38000 Grenoble, France
 ²: IME Process Metallurgy and Metal Recycling, RWTH Aachen University, Aachen, Germany

Property of SIMTEC - All rights reserved

The project has received funding from the European Union's Horizon 2020 research and innovation program under Grant Agreement N°869268.

Modelling of an ensemble averaged electric arc in a laboratory-scale electric arc furnace

Outline

- I. Background Motivations Objectives
- II. Modelling and Numerical Model
- III. Main Results
- IV. Conclusions Perspectives

Before starting, who we are... www.simtecsolution.fr

SIMTEC : Fundamentals

- French Numerical modelling consultancy
- Leader in France of the COMSOL Certified Consultants, key partner worldwide
- 7 members Eng.D. + Ph.D.
- Main partners:
 - big international companies
 - laboratories
- Involved in the Research projects like EU FP (SHARK, SisAl)/ PhD supervision

I. Background – Motivations – Objectives

Background

- ightarrow Optimization of the silicon production in Europe
- \rightarrow Recycling materials and using a carbon-emission friendly technology
- \rightarrow Silicon production experiments are conducted on laboratory and pilot scales
- \rightarrow Different types of furnaces
- \rightarrow The process optimisation relies on both the experiments and the numerical modelling

I. Background – Motivations – Objectives

Motivation

- \rightarrow Optimize furnace operation: predict possible thermal damages or heat losses
- ightarrow Increase the raw material melting efficiency

Objectives

- → Simulate the furnace preheating and the initial slag melting in a laboratory-scale electric arc furnace (EAF)
 - → Perform an ensemble averaging of the electric arc effects (radiation, heat source, Lorentz force)
 - \rightarrow Model the mass, momentum, and heat transport with phase change
- \rightarrow Validate the model against available experimental data

II. Modelling and Numerical Model

Modelling approach

- → Make use of the 0D Channel-Arc model ^[1]
 → Arc temperature and voltage drop
- → Compute instantaneous arc effects (radiation, heat source, Lorentz force) relative to the instantaneous arc position
- → Compute ensemble-averaged arc effects for a uniform probability of the arc position
- → Use COMSOL Multiphysics[®] to simulate heat, mass and momentum transport in EAF

^[1] G. A. Saevarsdottir, H. L. Larsen and J. A. Bakken, "Modelling of industrial ac-arcs. High Temperature Material Processes," *An International Quarterly of High-Technology Plasma Processes*, no. 3(1), 1999

II. Modelling and Numerical Model

Geometry and materials

Shell geometry of the **Electric Arc Furnace** Axial symmetry assumption Water cooled arc copper electrode

II. Modelling and Numerical Model

Geometry and materials

Slag properties

→ Slag properties as functions of its composition and temperature are modelled with different models from literature, including the Ken Mills model ^[2]

Other materials

→ Properties from literature or from the material supplier

Air plasma properties ^[3]

- [2] K. C. Mills, L. Yuan and R. T. Jones, "Estimating the physical properties of slags.," J. S. Afr. Inst. Min. Metall., vol. 111, no. 10, pp. 649-658, 2011.
- [3] Q. G. Reynolds, *Mathematical and computational modelling of the dynamic behaviour of direct current plasma arcs, PhD Thesis,* University of Cape Town, 2009.

II. Modelling and Numerical Model

Physics

- ightarrow Heat Transfer in Solids and Fluids with phase change
- → Surface-to-Surface Radiation

Domain

Boundary conditions

9

II. Modelling and Numerical Model

Physics

\rightarrow Turbulent Flow k- ε model in gas

Boundary conditions

II. Modelling and Numerical Model

Physics

 \rightarrow Turbulent Flow k- ϵ model in the liquid phase of the slag layer

Domain

Boundary conditions

II. Modelling and Numerical Model

Physics

\rightarrow Electric Current in an instantaneous electric arc

→ The arc shape is modelled according to the Bowman model ^[4]
 → This shape is used to compute the instantaneous Lorentz force

II. Modelling and Numerical Model

Physics

 \rightarrow Electric Currents to simulate the Joule effect in electrically conducting materials

II. Modelling and Numerical Model

Physics

 \rightarrow Deformed Geometry to simulate variable electric arc shape

→ Global and Domain ODEs to compute quantities associated with the ensemble averaging of the electric arc

- II. Modelling and Numerical Model
 - Meshing
 - \rightarrow Triangular mesh
 - \rightarrow Boundary layer in fluids
 - \rightarrow 13200 linear mesh elements
 - → 114000 DOF

Principal computational domain

II. Modelling and Numerical Model

Meshing

Additional computational domain

\rightarrow 3600 mesh elements

III. Main Results

Computed temperature fields

→ After almost 3 hours of furnace operation, the process is not yet stationary → Numerically, the slag layer is completely melted in 10⁴ seconds if $P \ge 6.3$ kW

III. Main Results

Electric arc temperature

 \rightarrow The plasma conductivity varies from 3.6 to 4.1 kS/m

 \rightarrow The instantaneous plasma velocity in the arc column varies from 137 to 185 m/s

III. Main Results

Log₁₀ of the averaged irradiance due to arc radiation

→ The highest irradiance is at the center of the slag surfaces: 575 to 1660 kW/m² depending on P

III. Main Results

Lorentz force

P = 7 kW Time = 10^4 s

→ The maximum of the averaged Lorentz force is located under the edge of the electrode

III. Main Results

Reynolds averaged velocity field

 \rightarrow The maximum air velocity reaches about 1 m/s under the edge of the electrode

III. Main Results

Global balance of enthalpy

 \rightarrow The global enthalpy conservation is well satisfied

III. Main Results

Voltage drop across the furnace terminals

→ As P increases, U_f reduces due to decreasing resistance of the slag layer → As arc length H decreases, U_f reduces due to decreasing resistance of the arc → The model predicts U_f values similar to the experimental ones when $H \le 4$ mm

III. Main Results

Computed and measured shell temperature

- \rightarrow Shell temperature is not sensitive to the arc length H
- \rightarrow According to the model, the long-term experimental input power must be around 3.5 kW
- → At the top of the furnace, the numerical temperature is underestimated, which is explained by overestimated heat losses as the off-gas system is not modelled

IV. Conclusions - Perspectives

Conclusions

- → Successful simulation of the preheating of the laboratory-scale Electric Arc Furnace (EAF) and the initial slag melting in it
- → The ensemble averaging of the Channel-Arc model is demonstrated to be an efficient approach for simulating a distributed heat source in an EAF
 - \rightarrow Plausible material temperatures in the neighbourhood of the electric arc
- → The simulated average temperature on the surface of the liquid slag pool (1594 to 1716 °C) falls within the range of experimental measurements
- → The work is validated against experimental data by fitting temperature and voltage measurements
- → The model has shown that for a complete melting of the initial slag layer, the initial input power should be above 6.3 kW, which is also confirmed in practice

IV. Conclusions - Perspectives

Perspectives

 \rightarrow The developed model can be further used to optimize the furnace operation:

ightarrow To predict possible thermal damages or heat losses

 \rightarrow To increase the raw material melting efficiency

→ The presented ensemble averaging approach can be applied to other electric arc problems with a similar geometry

To finish...

Q&A?

Thank you!

Our question: What about a coffee to discuss your topic? 🙂

Sergey Semenov SIMTEC (+33) (0)9 53 51 45 60 sergey.semenov@simtecsolution.fr

COMSOL CONFERENCE 2023 MUNICH