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Abstract: This  note  presents  a  model  for  the 
dynamic  simulation of a catenary mooring line 
(or  a  submarine  power  cable).  In  general, 
mooring lines are subject to a direct wave load 
(e.g. drag, inertia) in addition to the induced load 
due to movement of the vessel to which they are 
linked.  Specific  aim of  this  note  is  to  present, 
calibrate and validate the numerical response to 
direct wave action, by comparisons with physical 
model tests.

Tests were carried out at the wave flume of 
the Maritime Laboratory of IMAGE Department, 
Padova  University,  within  the  framework  of  a 
Master  thesis.  Wave  induced  loads  were 
measured  at  the  fairlead  of  a  compliant  chain, 
with the peculiarity that the fairlead was hinged 
to a fixed point, the chain being simply subject to 
the load induced by regular (slightly non-linear) 
waves.

The  equations  describing  the  dynamic 
movements of the chain in Comsol Multiphysics 
are written in weak form.  
It is concluded that the model well represents the 
tests when the drag coefficient is equal to 1.2-1.4 
and  applied  to  an  area  equal  to  the  maximum 
apparent width.

Keywords:  Drag,  Dynamic  load,  Mooring, 
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1. Introduction

Mooring  systems  of  floating  Wave  Energy 
Converters (WEC) are characterized for instance 
in Harris et al. (2004) and - more extensively – 
in Fitzgerald (2008). 

They  may  be  classified  in  “Passive”, 
“Reactive” and “Active”. 

“Passive”  moorings  (possibly  catenary 
anchor  leg)  have  mainly  station  keeping 
purposes and are typical of devices based on the 
overtopping principle. 

“Reactive”  moorings  (possibly  spread 
mooring with taut lines) provide a reaction force 
which  is  directly  used  by  the  power  take  off 

system and are typical  of devices based on the 
wave activated body concept.  

“Active”  moorings  (possibly  spread 
moorings with chains), have an optimal rigidity 
to tune the dynamic movement of the WEC and 
maximize efficiency.

In the latter case, optimal performance can be 
reached  only  if  the  dynamic  behavior  of  the 
WEC  is  known  with  accuracy.  Lumped  mass 
models of the WEC that concentrate the mooring 
system  effect  into  stiffness  and  damping 
coefficients cannot be used, since such analysis 
ignores  the  additional  modes  of  oscillations 
caused by the presence of many added masses, 
each with many degrees of freedom. 

In practice, the dynamic of each line must be 
investigated. 

Note  that  there  are  many  sources  of 
nonlinearities  in the problem: part  of  them are 
related  to  the  material  and  geometry  of  the 
system,  and  are  well  known  in  naval 
architecture; part of them are rather new, and are 
related  to  the non linear  behavior  of  the  wave 
induced  load  which  is  much more  pronounced 
than  for  ships  and  vessels  (so  that  many 
commonly accepted simplifying assumptions are 
not justified for WEC applications).

Design  poses  many  challenges,  non  only 
because the number of elements under analysis 
explodes, but also because overdesign is not an 
option (the aim being an optimization). 

A number of recent project focus on mooring 
design of WECs and their deliverables  may be 
used  as  reference  to  this  problem:  Fp7 project 
CORES  (Components  for  Ocean  Energy 
Renewable  Energy  Systems)  funded  by  the 
European  Community and the project  SDWED 
(Structural  Design  of  Wave  Energy  Devices) 
funded  by  the  Danish  Council  for  Strategic 
Research.

Several  models  of  the  chain  dynamic  are 
available.

Brown  and Mavrakos  (1999)  compared  the 
results of a number of codes for cable analysis in 
both  frequency  and  time domain.  The  analysis 
includes friction due to movement between the 

Excerpt from the Proceedings of the COMSOL Conference 2010 Paris

http://www.comsol.com/conf_cd_2011_eu


cable  and the sea  floor.  Elasticity of the chain 
and  synthetic  cable  are  well  represented. 
However,  the  analysis  is  done  in  a  still  water 
velocity field so that the wave excitation forces 
on  the cable  are  not  included.   Johanning  and 
Smith  (2006)  have  compared  experimental 
results for tension and damping of a 7m catenary 
using a time domain model (OrcaFlex), showing 
a good representation of the line dynamic under 
non-linear conditions. 

Two  kinds  of  approaches  can  be  followed, 
that assume as dependent variables either the line 
deformation  or  the  line  position.  Gobat  and 
Grosenbaugh  (2006)  follow the  first  approach. 
The second approach (Martinelli et al., 2010) is 
more suited to deal with interaction with the bed 
Comsol  Multiphysics,  and  it  was  therefore 
preferred. 

The  load  induced  by  the  wave  orbital 
movement on the chain is usually evaluated by 
means  of  the  Morrison  Equation.  The  drag 
coefficient  in  the  formula  has  been  frequently 
computed for a fixed cylinder (characterized by 
its  diameter)  at  any  Reynolds  numbers.  For  a 
chain, the characteristic dimension is reasonably 
the total width and the extension of the laminar 
regime should be somewhat  smaller,  given  the 
chain irregular geometry. 

In order to study the processes involved into 
mooring  dynamic,  the  Authors  investigate 
simultaneously physical models in wave flumes 
and numerical simulations at the same scale, and 
are  therefore  interested  at  low  Reynolds 
numbers.

Aim  of  this  note  is  to  present  a  dynamic 
model for a complaint chain, validate it by means

 of  physical  model tests and calibrate  the drag 
coefficient  in  the  Morrison  Equation  at 
laboratory  scale,  i.e.  for  Reynold  numbers  of 
order 1000.

The following Sections describe: the physical 
model tests, including the results; the governing 
equations given in weak form, with some details 
concerning  the  application  to  Comsol;  the 
numerical  results  and  the  agreement  with  the 
experimental  measurements;  the  conclusive 
discussion.  

2. Physical model tests

Tests  were  carried  out  at  the  Maritime 
Laboratory  of  IMAGE  Department,  Padova 
University.  The  laboratory  is  equipped  with  a 
flume with wave generator equipped with active 
wave absorber. The flume is 36.0 m long, x 1.00 
m wide x 1.30 m high.

   

Figure  1.  Left  and  right  chains  (load  cell  1  and  2 
respectively).

Figure 2  Set up of chains in the flume and particular of Load Cells position.



Two steel  chains,  made of welded stainless 
steel, are placed parallel to the flume axis.  The 
the  fairlead  is  hinged  to  a  bar  at  the  water 
surface. One chain (chain1, Figure 1 left) has the 
anchor position toward the wavemaker  and the 
other  toward  the  absorbing  beach  (chain  2, 
Figure 1 right).

Three  regular  waves were  generated.  Wave 
characteristics and results of the measured load 
are given in Table 1 and Figure 3.

Table 1   Wave characteristics for regular tests, 
amplitude of force signal.

Type T [s] H [cm] Fmax Fmin
Reg1 0,8 10,45 0,153 0,137
Reg2 0,98 14,06 0,154 0,128
Reg3 1,22 14 0,154 0,125
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Figure 3  Amplitude of the load oscillation Vs inci-
dent wave height.
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Figure 4  Example of record of load cell readings. 
Test Reg1 in Table 1

Chains  are  defined  by  the  following 
characteristics:  dry  weight  w=70.0  gr/m;  total 
length  Ltot =  5.00  m;  horizontal  distance  from 
anchor to fairlead  Ls = 4.68 m; length of chain 
lying down on the ground Lr = 1.4m; horizontal 
length of suspended chain  L = 3.28m; length of 
suspended chain s = 3.6m.

Stress  along the  axis  direction  is  measured 
close  to  the  fairlead  by  impermeable  strain 
gauges (full bridge). 

Figure  4  shows  an  example  of  measured 
load.

4. Numerical model

4.1 Domain equation 

The domain is 1D, and is the chain itself and 
the length of the domain is therefore equal to the 
chain length at rest.  The  independent variables 
are s and t, i.e. the abscissa along the chain and 
time.

The  dependent  variables  are  X  and  Y, 
defined as the horizontal and vertical movement 
respectively,  the  axial  deformation  ε and  the 
angle  ϕ formed  by  the  tangent  with  the 
horizontal.

The  differential  equations  of  motion  have 
been  derived  in  many  publications,  see  as  for 
instance Goodman and Breslin (1976) or Aamo 
and Fossen (2000). 

The  domain  equations  in  terms  of 
displacements become:
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The first two equation force the momentum 
balance  along  the  horizontal  and  vertical 
direction, the last two are congruence equations.
The constitutive law is used to define the stress 
along the cable, that is then projected along the 
horizontal and vertical direction:

The constitutive laws are:
ϕε cosEAH = , ϕε sinEAV =

E being the Young modulus of steel. 
Two auxiliary dependent variables are added, 

the reaction force R at the bottom, a mere elastic, 
and the angle of the apparent orbital velocity ψ, 
defined  on  the  basis  of  the  wave  and  cable 
velocity.

As a guideline for the implementation, it  is 
shown in the following how to insert the weak 
and dweak terms:



4.2 Wave load

In  order  to  include  the  wave  action,  the 
orbital velocity up to second order are inserted as 
global expressions:
v=v1+v2 (horizontal velocity of waves)
w=w1+w2 (vertical velocity of waves)
v1=ω A cosh(k (z+D))/sinh(k3 D) cos(k X-ω t)
v2=3/16 ω k (2 A)2 cosh(2 k (z+D))/

sinh(k D) 4 cos(2 k X-2 ω t)
w1=ω A sinh(k (z+D))/sinh(k3 D) sin(k X-ω t)
w2=3/16 ω k (2 A)2 sinh(2 k3 (z+D))/

sinh(k D) 4 sin(2 k X-2 ω t)
ω, k= wave frequency, wave number;
A = wave amplitude;
z = Y-D 
D= depth (0.9 m)

The Morrison Equations needed to evaluate 
the load induced by the horizontal  and vertical 
velocity are:
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where  d is  the  maximum  width  of  the  chain 
links, i.e. the 7 mm, and not their thickness (2 
mm),  Ac is  the  volume per  unit  length  of  the 
chain, and the absolute velocity is obviously

22 )()( YwXvu  −+−=⋅
Note that the drag component has the 

direction of the normal to the line and the inertial 
term has the direction of the corresponding 
velocity.

4.3 Initial, boundary conditions and mesh

Initial  conditions  are  supplied  indirectly. 
First, a known simple configuration is supplied, 
consisting  in  a  catenary  fully  raised  from  the 
bed. Then, the fairlead is slowly moved (lowered 
and shifted) to the true initial position, so that the 
geometry  and  the  stress  are  computed  by  the 
code  itself.   During  this  stage,  occupying  the 
computational  time  t  between  0  and  25  s,  no 
waves are present. After 5 seconds the wave load 

is gradually applied and after 5 more seconds the 
regular  (non-linear)  wave  maintains  its  full 
amplitude.

The Boundary conditions are applied only to 
the end points of chain. X,Y are given both at the 
anchor point and at the fairlead, where they are 
hinged.

Mesh element size used in the computation is 
0.01 m. Simulations with grid  size of 0.001 m 
proved the stability of the results.  
The  convergence  tolerance  and  the  equation 
scaling  must  account  for  the  fact  that  the 
deformation needs to be very accurate. 
 
5. Numerical results

Results  are  given  in  terms  of  axial  load, 
obtained as S=EAε, at the fairlead.

Figure  5 shows  S for  the  first  wave,  Reg1 
(see  Tab.  1).  The  initial  load  is  computed  in 
absence of waves and corresponds to the static 
condition. 

Agreement  between  numerical  and 
experimental results shows that the laboratory set 
up  is  accurately  described.  When  the  regular 
wave  load  is  applied,  the  load  at  the  fairlead 
obviously  oscillates:  Average  is  approximately 
equal to the initial load, since non-linear steady 
drift on the chain is negligible. 

Figure 5  Simulated load along Chain 1, Test Reg1 in 
Table 1.

Figure 6 shows a comparison of mean load 
between numerical and experimental results and 
optimal agreement is obtained.

Excursion between maximum and minimum 
load  gives  a  measure  of  the  effect  of  waves. 
Figure 7 shows a comparison of load excursion 
between numerical and experimental results. The 
obtained  good  agreement  is  the  result  of  a 
calibration  procedure.  The  image  presents  the 



result  of  a  calibration  carried  out  on  the  Test 
Reg1, that determined a drag coefficient of 1.4. 
A value of 1.2 gives similar results.

Figure 6  Comparison between average measured 
load.

Figure 7  Comparison between amplitude of load 
oscillation

6. Conclusions

Comsol  software  is  used  to  solve  the 
dynamic  of  a  chain  where  the  dependent 
variables  are  displacements  and  not 
deformations.  

Where the cable goes slack or when there is a 
rapid  lifting  and  lowering  of  the  cable  to  and 
from the sea bottom, the convergence is slow, of 
order  30  mins and  the  default  accuracy  of  the 
variables  involves  some  tampering  (and 
tempering!).  Anyway the solution fully agrees to 
the experimental measurements.  

The  drag  coefficient  was  calibrated  and  a 
value of 1.2-1.4 was found appropriate, the cross 
section being determined by the total widths of 
the links.
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