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Abstract: This work is concerned with the study 
of the asymmetrical phenomenon observed in 
three-phase transformers during the standard 
short-circuit test. The purpose of our work is to 
see if the asymmetric measurements can be 
predicted with the use of 2D finite-element 
models. To this end, we use the AC/DC module 
of COMSOL Multiphysics. A multi-port network 
impedance is then determined to explain the 
main source of asymmetry. 
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test, 2D finite element modeling. 
 
1. Introduction 
 

Low-Frequency transformers are widely used 
in power networks for efficient utilization of 
electric energy. Its basic functioning has been 
understood since the end of the nineteen century 
and taught in electrical engineering courses. 
However, the basic theory that leads to the 
classic equivalent circuit of the transformer is 
unable to describe intriguing behavior observed 
during certain operating conditions. It is 
therefore necessary to resort to more advanced 
tools to determine the electromagnetic fields that 
truly characterize transformers. The low-
frequency transformer can be described in 2D 
with the diffusion equation in terms of the 
magnetic vector potential. This way it is possible 
to model filamentary and massive conductors, as 
well as magnetic non-linear materials. 
Interconnection with external systems is also 
possible using the voltages and current equations 
of the 2D domain conductors. As a result, any 
operating condition of the transformer can be 
simulated. 
 
The load losses in a transformer are commonly 
measured by a three-wattmeter method. It is 
generally found that the three readings are 

appreciably different, even though the total 
losses (addition of the three readings) are near to 
the design value. The stray loss may form an 
appreciable part of the total load loss in power 
transformers. Hence, the simplest explanation 
which may normally be given is that the stray 
loss for each phase could be different due to the 
asymmetry of tank and other structural parts. 
However, this explanation is marginally true.  
 
The asymmetry observed during the no-load test 
has been fully discussed in the literature [1-4]. 
This magnetizing asymmetry, which results in 
different currents and powers of the three phases, 
occurs due to asymmetry in magnetic reluctances 
offered to the three phase fluxes. On the other, 
the load-loss test represents a more complicated 
problem since all phases are interacting and the 
loss and magnetic field distribution show more 
complex patterns.  
 
An interesting work [5] that sheds light on 
asymmetry during the load-loss test has been 
presented until very recently. Magnetic circuit 
theory is used there to explain the asymmetry 
phenomenon. However, the numerical model is 
not rigorously deduced from transformer 
geometry and material properties. The finite-
element method has been recently used [6] to 
explain the asymmetry phenomenon using a 
time-harmonic and three-dimensional model. It 
was found that the main causes of asymmetry are 
the unequal magnetic coupling between phases. 
Ref [7] has extended this work to mathematically 
prove that asymmetry will always exist in 
distribution transformers with cores of standard 
geometry. 
 
3D finite-element modeling requires extensive 
computational resources and geometry modeling 
may become cumbersome. So, it becomes 
desirable to assess the possibility of using 2D 
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finite-element modeling to study the asymmetry 
in transformers despite the fact of having true 3D 
geometries. This way, this work addresses this 
question using the AC/DC module of COMSOL 
and determining a multi-port impedance 
network. 
 
2. Magnetic Field Equations 
 

Maxwell’s equations that fully describe the 
modeling of low-frequency electromagnetic 
devices in two dimensions are: 
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where the displacement current and free charges 
have been disregarded. E, B, H are the electric 
field, the magnetic flux density and the magnetic 
field, respectively. They are strictly contained in 
a plane. J is the current density and its direction 
is perpendicular to the plane of E, B and H. 
Equations (1) can be combined to give for 2D 
problems the following diffusion-type equation: 
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with B= ∇×A, where A is the magnetic vector 
potential and is parallel to J, µ0 is the magnetic 
permeability of vacuum and µr is the relative 
permeability. Je is an external current density 
imposed in conductor regions and it is also 
parallel to J. It is uniform at the conductor cross 
section. Conductors have length d with a 
potential difference ∆V which is usually 
unknown. Analytical solution of (2) is difficult 
or impossible for electrical machines due to their 
intricate geometries, proper consideration of 
material properties and external elements 
interacting with them.  
 
2.1 Time-harmonic representation 
 

If all magnetic and electric quantities have 
sinusoidal variation with an electrical angular 
speed ω, they can be conveniently represented in 
the frequency domain using the classical phasor 
concept of circuit theory. This way, E, B, H and 

Je, ∆V are now complex quantities whereas ∂/∂t 
is substituted by jω. Equation (2) can then be 
rewritten as: 
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3. Multi-port impedance network 
 
Three-phase transformer self and mutual 
impedances can be defined in terms of a six-port 
network, each port corresponding to each of the 
six transformer windings (3 low-voltage (LV) 
and 3 high-voltage (HV) windings). This way, a 
set of 36 impedances are required to fully define 
the electromagnetic behavior of the transformer. 
Thus, a multi-port network [8] can be written in 
terms of the so called open-circuit impedances as 
follows: 
 

A AA BA CA aA bA cA A

B AB BB CB aB bB cB B

C AC BC CC aC bC cC C

a Aa Ba Ca aa ba ca a

b Ab Bb Cb ab bb cb b

c Ac Bc Cc ac bc cc c
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where uppercase letters refer to the HV side, 
while lowercase letters refer to the LV side. 
Winding currents and voltages are explicitly 
written in phasor form. The name of open-circuit 
impedances arises from (4), which shows that 
mutual impedances can be calculated 
individually as: 
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This equation simply states that a mutual 
impedance, between port windings i and j, can be 
obtained by measuring the open-circuit voltage 
on port i, that is caused by the current entering 
port j. It is understood that all other ports are 
open and do not carry currents. The self 
impedances are also obtained by making j=i. 
 



4. 2D Finite-Element Extraction of 
Transformer Impedances 
 

A three-phase, 31.5MVA, 132kV/33kV, star-
delta transformer is considered in this work. The 
transformer is designed to connect its HV 
windings in star, while its LV windings are 
connected in delta. Each of the LV and HV 
windings has 433 and 1000 turns, respectively. 
Windings are concentrically wound around the 
core limbs. Figure 1 shows the main dimensions 
of this transformer. 
 
The AC/DC module of COMSOL has been used 
to simulate the time-harmonic operation of the 
transformer. This module can handle the 
following 2D partial differential equation: 
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where εr and ε0 are the relative and vacuum 
permittivities, respectively. v is a velocity term 
that may account for moving conductors in 
problems where the same geometry is preserved 
as the conductor changes position. If εr and v are 
set to zero, it is readily seen that equation (3) is 
obtained and COMSOL can deal with the 
transformer modeling problem of this work. 
 
Six simulations were performed to obtain the 36 
impedances of (4). They involve the individual 
injection of current into each of the six phases 
according to (5). Since a constant permeability of 
the transformer core is assumed, the simulation 
problem is rendered linear and an arbitrary 
current value will lead to the same impedance 
value (when dividing the induced voltages by 
this current). So, an injection of one ampere has 
been chosen here to make the induced voltage 
values equal to the impedance ones (as can be 
seen from (5). 
 
The only solid conductor present in the 
transformer is the tank which is assumed earthed 
and, therefore, the ∆V term in (6) is set to zero. 
The eddy current effect is modeled with the 
jωσA term. The skin depth must be considered 
during the construction of the finite-element 
mesh. The size of the elements in the solid 
conductor region should be close to the skin 

depth to properly model the eddy currents. 
Figure 2 shows the finite element mesh obtained 
with COMSOL's automatic mesh generator. It 
can be seen that a lot of elements have been 
placed in the tank region. 
 
Boundary conditions have been set up as 
follows. A Dirichlet boundary condition has 
been assigned to the outer surface of the tank. 
This can be easily justified since the penetration 
of eddy currents is smaller than the tank 
thickness and the magnetic flux cannot reach the 
outer tank surface. Symmetry of excitations and 
geometry allow the use of a Neumman boundary 
condition to only model one half of the full 
geometry. 
 
The transformer impedances are obtained once 
the finite-element results provided by COMSOL 
are available. The procedure is as follows. The 
general expression of the magnetic flux is given 
by [8]: 
 
 

 
 
Figure 1. Main dimensions of the transformer 
geometry. Units in meters. 
 

 
 
Figure 2. Finite Element Mesh created with 
COMSOL's automatic mesh generator. 
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where the "hat" arrows indicate vector quantities. 
Equation (7) is greatly simplified for 2D 
problems governed by (3), since the magnetic 
vector potential has only one component. As a 
result, the magnetic flux that passes through two 
points can be calculated as: 
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where A2 and A1 are the potential values at the 
two points. This expression cannot be directly 
applied to calculate the magnetic flux that 
crosses the transformer windings since they are 
not concentrated in one single point. They are 
occupying a finite surface S and a single 
magnetic vector potential cannot be defined. 
However, equation (8) can still be used if an 
average value of the magnetic vector potential in 
the surface S is calculated as: 
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where A  is the average value of A. Hence, the 
flux linkages of any of the transformer windings 
can be written as: 
 

( )go returnN A A dλ = −              (10) 
 

goA  is the average potential on the winding turns 

that go into the 2D model while returnA  is the 
average potential of the winding turns that come 
out. N is the number of winding turns. Notice 
that the go and return turns form one winding. 
As a result, there are 12 surfaces modeling the 
six phases of the transformer. The voltage 
equation of any winding is then given in the 
frequency domain by: 
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where r is the total resistance of the winding 
conductors. Equations (11) can be readily 
computed using COMSOL's integration coupling 
variables at appropriate subdomains.  
 
5. Numerical Results 
 

Figures 3 to 5 show the calculated magnetic 
flux distributions at ωt = 0° when the LV 

windings are excited. The flux distributions for 
the HV windings are omitted since they are 
"visually" identical to their corresponding LV 
windings. The asymmetry of magnetic flux is 
immediately seen in Figures 3 and 5, where the 
main flux is unequally distributed in the 
remaining two core legs. This visual fact is 
reflected in unequal magnetic couplings.  
 

 
 
Figure 3. Magnetic flux distribution at ωt = 0°. 
Phase a excited. 
 

 
Figure 4. Magnetic flux distribution at ωt = 0°. 
Phase b excited. 
 

 
 
Figure 5. Magnetic flux distribution at ωt = 0°. 
Phase c excited. 
 
Tables 1 and 2 summarize the open-circuit 
calculations. They give the open-circuit induced 
voltages at winding terminals when each 
winding in turn is fed with one ampere. For 
instance, the first row of Tables 1 and 2 gives the 
values (in volts) of the induced voltages for the 
case of winding A. The particular value of a 
induced phase voltage due to a particular phase 
current is obtained from the tables by the letters 
that identify the HV and LV windings (e.g., the 
induced voltage of C due to current in A is 
located in the first row and third column of table 
1). Moreover, the two tables can be seen as 



impedance matrices that constitute the 
impedance matrix in (4). 
 
Table 1: Induced Voltages from Open-Circuit Tests: 
Part I  
 A B C 
A -96.49-j2.16e6 -13.19+j1.56e6 1.05+j5.97e5 
B -13.19+j1.56e6 -27.69-j3.12e6 -13.19+j1.56e6 

C 1.05+j5.97e5 -13.19+j1.56e6 -96.48-j2.15e6 
a -39.99-j9.34e5 -5.50+j6.75e5 0.53+j2.58e5 
b -5.71+j6.75e5 -11.55-j1.35e6 -5.71+j6.75e5 
c 0.53+j2.59e5 -5.50+j6.75e5 -39.99-j9.34e5 

 
Table 2: Induced Voltages from Open-Circuit Tests: 
Part II  
 a b c 
A -39.99-j9.34e5 -5.71+j6.75e5 0.53+j2.58e5 

B -5.50+j6.75e5 -11.55-j1.35e6 -5.50+j6.75e5 

C 0.53+j2.58e5 -5.71+j6.75e5 -39.99-j9.34e5 

a -16.93-j4.04e5i -2.38+j2.92e5 0.26+j1.12e5 

b -2.38+j2.92e5 -5.13-j5.85e5 -2.38+j2.92e5 

c 0.26+j1.12e5 -2.38+j2.92e5 -16.92-j4.04e5 

 
The following facts can be observed from the 
two tables. The impedance system complies with 
the reciprocity theorem of passive linear 
networks, that is, Zij=Zji. The real parts of the self 
impedances account for winding and stray 
losses, whereas the real parts of the mutual 
impedances only take into consideration the stray 
losses. The impedance asymmetries produce 
different power readings and current unbalance 
when the load-loss test is performed. 
 
Tables 1 and 2 have been compared with their 
corresponding ones in [7]. It was found that the 
asymmetry is correctly predicted in both 3D and 
2D representation. However the impedance 
values show very large deviations. This means 
that a 2D approximation cannot be used to 
approximate the true 3D nature of the 
transformer. 
 
Now, it is possible to use the multi-port network 
to compute the short-circuit currents of the load-
loss tests as follows. The network model can be 
used to obtain the winding currents produced by 
applying a short-circuit at the low-voltage 
terminals, whereas the high-voltage windings are 
fed with impedance voltages, this way 

representing the load-loss test. Equation (4) can 
be simply written as {V}=[Z]{I}, such that: 
 

{I}=[Y]{V}                      (12) 
 
The element entries of [Y] are called the short-
circuit admittance parameters of the passive 
network. The specification of {V}T= {10921 ∠ 
0°  10921 ∠ -120°  10921 ∠ 120°  0  0  0 } in 
(12) gives the short-circuit condition that 
represents the load-loss test. The value of 10921 
corresponds to impedance voltage. High-voltage 
input powers are found from the following 
phasor operations: *
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summarizes the results obtained from the six-
port network model. These results have also been 
compared with those provided in [7]. It was 
found again that the 2D model is unable to 
provide accurate numerical results. 
 
Table 3: Calculated Currents and Powers from Six-
Port Network Model. 
Limb HV Current [A] LV Current [A] Input 

Power 
right 33.14∠90.48o 77.04∠-90.09o -3067.6 

middle 33.36∠-150.25o 76.14∠29.72o 1589.4 

left 33.07∠-31.25o 76.80∠149.36o 7855.7 

 
6. Conclusions 
 

A 2D finite-element analysis has been 
performed to study the asymmetry phenomenon 
of three-phase distribution transformers observed 
during the load loss-test. The impedances of a 
multi-port network have been determined to 
show that asymmetry is mainly produced by 
unequal magnetic couplings. It has been found 
that a 2D representation is able to predict this 
behavior but a 3D representation is unavoidable 
if accurate numerical results are required for 
quantities measured at the terminals of ports. The 
authors are currently investigating correcting 
factors to increase the accuracy of the 2D 
numerical model. 
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