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Abstract: Finite Element analysis is used to 
model 2-D and 3-D paraelectric-dielectric 
composites (BaTiO3 spherical fillers randomly 
distributed in constant dielectric matrix). The 
effective dielectric response and tunability are 
studied under different filler sizes and different 
volume fractions. The results are consistent with 
previous theoretical and experimental results: 
with the increasing of filler size and volume 
fraction, the dielectric response and dielectric 
tunability are also increasing. Meanwhile, by 
making composite material, the dielectric 
response can be reduced greatly compared to 
pure BST material, while still keeping a high 
tunability.   
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1. Introduction 
 
    Ferroelectric (FE) materials are important for 
their nonlinear nature. With high and tunable 
permittivity, they are used to make capacitors 
with high tunable capacitance, and small in size. 
The spontaneous polarization of ferroelectric 
materials implies a hysteresis effect which can be 
used in the field of telecommunications and to 
make ferroelectric RAM for computers. 1-3 
However, the dielectric losses for ferroelectric 
materials are pretty high (typically the dielectric 
losses and tunability are proportional to the 
dielectric permittivity 2). Here are ways of 
getting around of this problem.  
 
1.1 Ferroelectric Material in Paraelectric 
State 
 

Barium strontium titanate (BaxSr1-xTiO3 or 
BST) is one of the most promising materials 
systems for tunable devices owing to its high 
dielectric response and its tunability near the 
ferroelectric phase transformation temperature 
TC. For bulk BST 60/40 (Ba0.60Sr0.40TiO3), TC is  

below room temperature (−30oC) and this can be 
controlled by adjusting the composition. Ideally, 
BST is employed in its paraelectric (PE) state to 
reduce losses associated with the hysteresis due 
to polarization switching. Several compositions 
of BST thin films have been studied in great 
detail for use in tunable microwave devices using 
a variety of different fabrication methods and 
substrates 3 and indicating that high dielectric 
tunability and relatively low losses accompanied 
by a minimal dispersion in dielectric properties 
over a large temperature interval can be achieved 
in FE heterostructures and graded multilayers 4.   

 
1.2 Creating Composite Material 
 
    Another way of further reducing the loss 
tangent is by creating a composite material 
consisting of a low-loss linear dielectric and a 
non-linear dielectric material, preferably a FE in 
its PE state. The determination of the dielectric 
properties of composite materials is a classical 
problem in electromagnetism that has been 
investigated using the effective medium theory 
(EMT). 5 Recently, Tagantsev and co-workers 
have used a modified EMT that takes into 
account the non-linear dielectric response of the 
FE material in a FE-dielectric composite. 6,7 The 
dielectric response, and its electric field 
dependence, of the FE is provided through a 
Landau potential that is then coupled with the 
EMT to establish electrostatic interactions 
between the FE matrix and the dielectric filler. 
The analysis shows that addition of a small 
amount of linear dielectric to a FE matrix 
actually improves the dielectric tunability but the 
loss tangent of the composite remains unaffected.  
 
    In this report, we analyze the dielectric 
response of a composite consisting of a linear, 
low-loss dielectric matrix with uniformly sized, 
randomly distributed PE BST 60/40 particles as 
functions of the fraction and size of the particles 
in 2-D and 3-D situations.   
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2. Thermodynamic Model 
 
    We first start off with the description of the 
electric field dependence of the dielectric 
response of the PE BST 60/40. BST 60/40 has 
the prototypical cubic perovskite lattice in its PE 
state above TC = −30oC and transforms to a 
tetragonal FE phase below this temperature. The 
phase transformation characteristics can be 
described via a Landau potential given by 
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where P is the polarization, T is the temperature, 
E is the applied electric field, F0 is the energy in 
the PE state, and a, b, and c are the dielectric 
stiffness coefficients. The temperature 
dependence of a is given by the Curie-Weiss 
law, CTTa C 0/)( ε−= , where C is the Curie-
Weiss constant and ε0 is the permittivity of free 
space. We shall assume that the BST inclusions 
are embedded in a compliant linear dielectric 
matrix and are stress free. The electric field 
dependence of the polarization follows from the 
equation of state such that: 
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where P0(E) is the equilibrium polarization at a 
given field E. The relative dielectric response 
parallel to the applied electric field and its 
tunability are given by:  
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For BST 60/40, the relevant Curie temperature, 
the Curie-Weiss constant, and the higher order 
Landau dielectric coefficients in SI units are: TC 

= −30oC, C = 1.34×105, b = 8.64×106×(T−175)+ 
3.36×109, and c = 2.38×109

 [complied from Refs. 
8,9]. Using Eqs. (2) and (3), the dielectric 
response and its electric field dependence can be 
calculated. At RT (=25oC), this results in the well 
known bell-shaped curve typical for a FE 
material in its PE state, as shown in Fig. 1. 
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Fig. 1. Change of dielectric response for BST fillers as 

a   function of electric field 
 
3. Model Description and Results 
 

A 2-D schematic depicting the model is shown 
in Figure 1a. The system is a composite thin film 
of dimensions L and L’ consisting of randomly 
distributed PE BST 60/40 spherical particles of 
diameter D embedded in a linear dielectric 
matrix with a relative dielectric constant of 25 
sandwiched between metallic electrodes. Three 
different particle sizes were analyze d with 
D=20, 50, and 80 nm whereas L and L’ were 
fixed at 250 nm and 500 nm, respectively. (The 
3-D model has similar schematic, with size L’, L’ 
and L). 

 
    For numerical modeling we use the nonlinear, 
time dependent Laplace equation realized in the 
COMSOL Multiphysics TM finite element 
toolbox. To construct the composite material, 
randomly positioned circles of diameter D 
representing BST particles are inserted into a 
rectangular dielectric matrix of dimensions L and 
L’. To calculate the effective dielectric response 
for the composite material, the built-in 
electrostatic module of COMSOL is employed 
which utilizes a two-dimensional Laplace 
relation given by 0)],([ 0 =∇∇ yxVrεε  to 
determine the local potential V(x,y) within a 
single mesh.  
 
3.1 Two Dimensional Model 
 

The model is first run for the 2-D geometry as 
illustrated in Figure 2a. Direct Time Dependent 
Solver in the COMSOL package is then used to 



obtain a transient analysis, with tested time steps 
and tolerances. Figure 2b shows the electric field 
contour plot for an applied electric field E and a 
corresponding potential V. Due to the abrupt 
change of dielectric response at the boundary 
between the BST particles and the matrix, the 
electric field and polarization vary greatly. In 
Figure 2c, the electric field is plotted along a 
section denoted AA'. From the straightforward 
application of the relevant Maxwell equations 
and the boundary condition corresponding to the 
continuity of the dielectric displacement at the 
dielectric/PE interface, one can conclude that due 
to the large difference between the dielectric 
response of the particles and the matrix, the 
electric field inside BST particles will be much 
lower than outside. The same result is 
demonstrated in Figure 2d where the polarization 
profile along AA' is plotted.  
 

            
Fig. 2.  (a) Schematic of composite made of BST 

particles and the linear dielectric matrix, (b) e lectric 
field distribution within the composite shown in (a), 

(c) electric field distribution, and (d) electric 
polarization distribution along section AA' in (b). 

    To examine the effect of the size of the PE 
particles on the overall dielectric response and 
tunability, we simulated three series of 
composites with particle diameters D=20, 50, 
and 80 nm. The effective small-signal dielectric 
response is calculated from the total energy of 
the system, i.e., the numerical integration of the 
local dielectric displacements and electrical 
fields. Figure 2 shows the result of composite 
relative dielectric response as a function of BST 
volume fraction and particle size. When the 
volume fraction is below the percolation 
threshold, all three of these composites show a 
linear dielectric response; above the percolation 
threshold, the response increases sharply and 
nonlinearly in each case. The percolation limits 
for the composites with 20, 50, and 80 nm 
particles were determined from Figure 3 to be 
45%, 37%, and 27% BST, respectively. These 
findings are in excellent agreement with 
theoretical results based on Monte Carlo methods 
for hard spherical and semi-penetrating particles. 
10,11 When the particles are small, the probability 
for them to overlap is smaller than larger 
particles and as such, composites with larger 
particles have a smaller percolation threshold, as 
shown in Figure 3. Furthermore, for the same 
BST volume fraction, composites with larger 
particles have a higher dielectric response as it is 
easier to form a percolation path with larger 
particles. These results are also consistent with 
the findings of Jylhä and Sihvola. 12 Using a 
similar approach wherein a Bruggeman EMT is 
employed together with a non-linear 
thermodynamic model for the incipient FE 
SrTiO3 (STO) based on Vendik and Zubko 13, the 
dielectric tunability of a composite consisting of 
STO particles embedded in a linear dielectric 
matrix was simulated. The theoretical model 
shows that once the percolation limit for STO 
particles is reached at around 30 volume percent, 
the dielectric tunability increases continuously 
with increasing volume fraction of STO. 
 

In Figure 4, dielectric tunability is calculated 
as a function of volume fraction and particle size 
between zero electric field and 12 kV/mm. It 
shows, as expected, a similar trend to the 
dielectric response shown in Figure 3. Below the 
percolation thresholds the tunabilities for the 
three series of composites are very small. As the 
volume fraction is increased, the tunabilities 
increase exponentially and composites with 



larger BST particles have a larger tunability at 
the same volume fraction. We use the model of 
D=80nm to compare the tunability between 
monolithic unclamped, stress-free BST and the 
composite material. At a volume fraction of 45% 
BST, the relative small-signal dielectric response 
of the composite is 360 and the tunability is 
about 58% at an applied field of 12 kV/mm. 
However, for monolithic BST, the relative 
dielectric response is 2300 and tunability is 
around 70% at 12 kV/mm. This means that by 
employing a composite material such as the one 
described in this analysis, one can reduce the 
effective permittivity greatly while still 
maintaining a very high tunability. 
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Fig. 3. Change of the composite dielectric response as 
functions of volume fraction and particle size 
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Fig. 4. Change of dielectric tunability at 1.2 kV/mm as 
function of volume fraction and particles size. 

 
3.1 Three Dimensional Model 
 
The 3-D has model has similar configuration as 
the 2-D model. PE sphere BST particles are 
randomly distributed in dielectric matrix. By 

contacting each other, PE percolation path can be 
formed in the dielectric matrix, as shown in 
Figure 5. 
 

 
Fig. 5. Change of the composite dielectric response as 

functions of volume fraction and particle size 
 
To examine the effect of volume fraction of the 
PE particles on the overall dielectric response, 
50nm particles are inserted into the rectangular 
dielectric matrix and electric field dependent 
composite dielectric responses are calculated 
under different volume fractions. As seen in Fig. 
6, with the increasing of volume fraction, the 
dielectric response is increasing. Also, when the 
volume fraction is below 20 percent, all the 
composite dielectric responses are nearly flat as a 
function of electric field; once the volume 
fraction exceeds above 20 percent, there are 
peaks coming out around small electric field and 
the composite dielectric response is getting 
similar to the bell-shaped curve in Fig. 1. 
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4. Conclusions 
 
As discussed above, we have configured Comsol 
to research paraelectric and dielectric composite 



materials theoretically. However, to make the 
model more approaching the real experimental 
results, chemical interactions between BST 
particles and the matrix, and their modification 
of the polarizability at the interfaces need to be 
taken into account explicitly. And we need to 
work on 3-D model with more particles with 
different sizes and surfaces, to examine the effect 
cause by space charge rough surfaces.  
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