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Abstract: Finite element modeling of three-
phase induction machines requires the solution 
of coupled circuit and field equations. This work 
aims to solve this problem using a strong 
coupling approach. The machine stator is fed 
through a three-phase non-ideal voltage source 
and the end winding effects are accounted for 
with inductances and resistances. The bars of the 
double squirrel cage of the rotor are modeled as 
solid conductors and interconnected through end-
ring sections that have finite impedance. Since 
steady-state is considered, a time-harmonic 
approach has been used to perform the machine 
simulations. 
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1. Introduction 
 
The accurate modeling of induction machines 
requires precise representation of geometry, 
material properties and excitations. Current-fed 
modeling can be readily achieved with classical 
finite element formulations. However, squirrel-
cage asynchronous machines are voltage fed at 
the stator terminals through external impedances 
and a voltage source. In addition, the rotor has a 
rather complicated arrangement of bars, which 
are short-circuited with end-rings of finite 
impedances, that needs to be considered. This 
leads to a coupled problem where field and 
circuit variables must be solved together. There 
are basically two approaches to achieve this goal: 
a) simultaneous solution of both systems of 
equations (strong coupling) and b) field and 
circuit systems are solved independently, using 
their respective solutions to excite each separate 
system (weak coupling). The theory for strong 
coupling of field and circuit systems can be 
found for instance in references [1-5]. Published 
examples of weak coupling approaches are given 
in [6-8]. Neglecting the external circuit 

connections can lead to important errors in the 
prediction of the machine torque and currents. 
Other difficulty when dealing with induction 
machines is the small air-gap that requires 
special attention while obtaining a proper 
meshing of this domain. This work addresses 
these problems, namely circuit field coupling and 
proper air-gap meshing, using the AC/DC 
module of COMSOL Multiphysics. As a result, a 
quasi-3D model can be obtained with accurate 
representation of overhang effects and coupling 
with external circuits. Solid and filamentary 
conductors are properly accounted for. The 
modeling of rotor and stator with meshes of 
different density is also presented along with the 
incorporation of rotor motion through 
modification of rotor conductivities and 
resistances (“slip referring” to stator frequency). 
Antiperiodic boundary conditions are considered 
in this work to reduce the size of the final 
numerical model. Comparison of the full model 
againts models neglecting coupling with external 
circuits and overhang effects clearly shows the 
importance of considering quasi-3D models. A 
brief discussion about the use of time-harmonic 
models in the determination of initial conditions 
required by transient models is also given. 
Finally, the manuscript shows the calculation of 
the torque-slip curve implemented with the aid of 
COMSOL’s Maxwell stress implementation.  
 
2. Magnetic Field Equations 
 

The Maxwell’s equations that fully describe 
the modeling of low-frequency electromagnetic 
devices in two dimensions are 
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where the displacement current and free charges 
have been disregarded. E, B, H are the 
electric field, the magnetic flux density and the 
magnetic field, respectively. They are strictly 
contained in a plane. J ∈ is the current density 
and its direction is perpendicular to the plane of 
E, B and H. The equations (1) can be combined 
to give the following diffusion-type equation 
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with B= ∇×A, where A  is the magnetic 
vector potential and is parallel to J, μ0 

∈
∈  is the 

magnetic permeability of vacuum and μr ∈  is 
the relative permeability. Je  is an external 
current density imposed in conductor regions and 
it is also parallel to J. It is uniform at the 
conductor cross section. This current density is 
usually unknown since its value depends on the 
magnetic vector potential and the external 
elements connected to the conductor. Conductors 
have length d∈  with a potential difference 
ΔV∈  which is usually unknown as well. v 

 is a velocity term that may account for 
moving conductors in problems where the same 
geometry is preserved as the conductor changes 
position. Analytical solution of (2) is difficult or 
impossible for rotating electrical machines due to 
their intricate geometries, proper consideration 
of material properties and external elements 
interacting with them. Numerical approximations 
are normally employed and the Finite Element 
Method [9] is widely used to obtain high quality 
solutions. If the static regions and the moving 
conductors are each modeled in their own 
reference frames (motion is explicitly modeled), 
the velocity term can be dropped out as follows 
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2.1 Time-harmonic representation 
 

If all magnetic and electric quantities have 
sinusoidal variation with an electrical angular 
speed ω , they can be conveniently 
represented in the frequency domain using the 
classical phasor concept of circuit theory. This 

way, E, B, H 

∈

2∈  and J, ΔV  are now 
complex quantities whereas ∂/∂t is substituted by 
jω. Equation (2) can then be rewritten as 
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3. Induction machine basics 
 

The stator currents of three-phase induction 
machines operating under balanced and steady 
state conditions produce a magnetic field that 
rotates at synchronous speed ωs∈ . ωs= ω for 
two-pole machines. The rotor of an induction 
machine moves with a speed ωr∈  that differs 
from the synchronous speed and therefore 
voltages and currents are induced in the rotor 
circuits. The speed difference can be calculated 
as sωs, where s∈  is known as the rotor slip. 
Thus, the rotor currents produce a magnetic field 
rotating at this slip speed with respect to the 
rotor, which in turn is moving at velocity (1-s)ωs. 
As a result, the magnetic field of the rotor 
currents rotates at the same speed of the stator 
field. The interaction of these two magnetic 
fields produces an electromagnetic torque. 
 

If the machine is excited with sinusoidal 
quantities, it is possible to have a static geometry 
in the frequency domain. This implies that slot 
effects are disregarded, but this effect can be 
reduced by positioning the rotor in a location 
where the electrical quantities have their average 
value over an electrical cycle. The frequency of 
the voltages and currents in the rotor conductors 
differs from the frequency f  in the stator 
conductors. The rotor frequency is proportional 
to the slip (sf) and this must be reflected in the 
machine modeling. In standard electrical 
machine theory this is achieved by using an 
equivalent circuit where the rotor impedance is a 
slip function. The representation of induction 
machines with (4) must acknowledge this fact. 
There are two ways to achieve this goal. One 
involves using the classical concepts of electrical 
machine theory and the other one involves the 
manipulation of the velocity term in (2) (see 
below). 
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3.1 Stator field equations 
 

It is convenient to divide the machine in two 
sub-domains: stator and rotor. The stator domain 
contains the stator core, the phase conductors 
and part of the air gap. The rotor domain 
contains the rotor core, the rotor conductors and 
the remaining part of the air gap. The stator 
winding conductors can usually be considered 
with negligible eddy-current effects (filamentary 
conductors) since the dimensions of their cross 
sections are comparable with the skin depth at 
power frequency. Thus, the stator can be 
represented with the following set of equations 
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The first equation applies to stator conductor 
regions. Air is represented with the second 
equation while iron core is described by the third 
equation. A and Je vary with rated frequency. 
 
3.2 Rotor field equations 
 

The conductors of squirrel cage type rotors 
must consider the eddy current effect. Hence, the 
set of equations for the rotor domain are given by 
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where the conductivity is a function of s. 
Actually σ(s) is proportional to the actual rotor 
bar conductivity (σ(s)= sσ) and refers the rotor 
quantities to the stator frequency. This procedure 
is fully equivalent to the derivation of the 
equivalent circuit of induction machines in 
classical electrical machine theory where the 
rotor resistance is divided by s [10]. An 
equivalent way of getting this result is by 

manipulating the (v )Aσ × ∇×  term as shown in 
[11] with space and time phasors. 
 
4. External circuit conditions 
 
External conditions that cannot be directly 
included within the field model must be 
incorporated in order to properly predict the 
machine operation. The stator is connected to a 
three-phase voltage source through the end-
winding impedance. Figure 1 shows the 
interconnection of the field and stator circuit 
model. 
 

 
 
Figure 1. Voltage source feeding the induction 
machine. rs ∈  is the source resistance while Loh 
∈  is the end-winding inductance of the stator 
windings. 
 

The rotor conductors are also interconnected 
through external impedances. For a squirrel cage 
rotor, the conductors are solid and short-circuited 
through conducting end rings of finite 
impedance. The equivalent circuit of the rotor 
circuit is shown in Figure 2. The squirrel cage 
bars are represented by gray rectangles and they 
belong to the field domain. The shown 
resistances rer ∈  have all the same value and 
account for the end-ring sections that 
interconnect the cage bars. Likewise, the 
inductances of the cage circuit Ler ∈  have all 
the same value. 
 

The end-ring resistances must be divided by 
s, just as in the equivalent circuit of induction 
machines, for correct representation of the rotor 
impedance at stator frequency. Notice that the 
rotor circuit shown in Figure 2 accounts for the 
anti-periodic boundary conditions of the 
machine. Only one pole pitch is required to 
represent the whole machine behavior. 
 



 
 
Figure 2. Squirrel cage equivalent circuit with cage 
bars represented by the field model. rer and Ler are the 
resistance and inductance of the end-ring section 
connecting two cage bars. 
 
5. Current and voltage relationships 
 

The coupling of circuit and field variables 
requires explicit expressions for the voltages in 
all machine conductors. The voltage expression 
for filamentary conductors is easily obtained 
from Faraday’s law and the voltage drop caused 
by the filamentary conductor resistance: 
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where N∈  is considered the number of series-
connected conductors in a given cross section 
and jωNA the conductor flux linkages per unit 
depth. i is the circulating current in each 
filamentary conductor. The current density of the 
N filamentary conductors is given by 
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where S is the area occupied by the N series-
connected filamentary conductors. 
 

The total current circulating through a solid 
conductor can be found by integrating ( )j s Aωσ  

and ( )s V
L

σ Δ  from the first equation of (6) over 

the conductor cross section: 
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Solving for ΔV gives 
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where rsol is the dc resistance of the solid 
conductor (the resistance of the conductor at zero 

frequency). Equations (7)−(10) couple the field 
model with the exterior circuit system.  
 
6. Numerical model and results 
 

The induction machine considered in this 
work is a double squirrel cage induction motor. 
It is a two-pole, 7.5 kW, 380 V, 50 Hz, three-
phase star connected motor. Its geometry is 
depicted in figure 3 and its finite-element mesh 
is shown in figure 4. Lagrange-quadratic 
elements were use to perform the numerical 
simulations. Two independent meshes were first 
constructed: one for the stator domain and 
another for the rotor region (see sub-sections 3.1 
and 3.2). They were stitched together using the 
“create pairs” capability of COMSOL. The 
“perpendicular induction currents, vector 
potential  application” mode of the AC/DC 
module of COMSOL includes the field equations 
presented in section 3, allowing the proper 
specification of material properties and boundary 
conditions. The machine also offers anti-periodic 
boundary conditions which means that: 

 

 
 
Figure 3. Machine geometry. 
 

 
 
Figure 4. Finite-element mesh. 
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for the two-machine pole considered in this 
work. 



Equations (7) and (10) can be readily 
computed using integration coupling variables at 
appropriate sub-domains. The resultant values of 
the integration coupling variables are inputted as 
a potential ΔV difference inout in the sub-domain 
settings of the rotor bars. Likewise, equation (8) 
is calculated as a global scalar expression that is 
later used as a sub-domain setting of stator 
conductor sub-domains. Hence, the COMSOL 
interface with SPICE circuit lists becomes 
available and the problem is fully set up. 
 

Figure 5 shows the flux plot for rated 
operating conditions. It can be seen that the 
magnetic field can penetrate well into the rotor 
core because the slip is small and the effective 
rotor conductivity reflects this fact (σ(s)= sσ). 
Figure 6 shows the flux plot for the locked-rotor 
operating condition with rated voltage and 
frequency applied at the stator terminals. In this 
case, the effective rotor conductivity equals the 
actual conductivity of the rotor bars. Now, it can 
be observed that the magnetic field is only 
reaching the outer parts of the rotor body due to 
the stronger eddy current effects in the squirrel 
cage.  
 

A parametric analysis can be easily 
performed by allowing the slip to vary from 0 to 
1 (motor operation). The electromagnetic torque 
for each slip is computed using the Maxwell 
stress tensor. These results are depicted in figure 
7, where the expected behavior of the 
electromagnetic torque versus slip is readily 
seen. 
 

 
 
Figure 5. Rated Operating Condition. 
 

 
 
Figure 6. Rotor at standstill and rated voltage and 
frequency applied at the stator terminals. 
 

 
 
Figure 7. Electromagnetic torque versus slip. 
 
Transient simulations of induction machines are 
important to predict non steady-state operating 
conditions. The determination of initial 
conditions is important for accurate transient 
computation. This means that in most cases an 
additional transient simulation is required. 
Computational savings can be obtained by using 
time-harmonic solutions since the actual solution 
would be near them. The time-harmonic solution 
is not the exact initial condition because tooth 
harmonics and non-linearity have not been taken 
into account. 
 
Finally, it is important to emphasize that 
neglecting the overhang effects, such as the end-
ring impedances, leads to large errors. This is 
shown with the calculated current at rated 
operating conditions. A value of 8.74 A is 
obtained when the end-ring impedances are 
considered while 12.67 A is found when they are 
diregarded. This implies a 45% error which 
cannot be neglected, and stresses the need of 



quasi-3D models such as the one presented in 
this work. 
 
7. Conclusions 
 

Time harmonic modeling of induction 
machines is important for predicting their steady-
state operation. Ferromagnetic materials can only 
be considered linear at the moment with 
COMSOL or using a rather complicated 
procedure to find an equivalent complex 
permeability. It has been found that 
interconnection of external systems to the field 
model is important to avoid large errors. Correct 
identification of solid and filamentary conductors 
must be carried out to avoid large problems and 
to properly model eddy current effects. The 
capacity of COMSOL for stitching two meshes 
of different densities provides a convenient way 
of forming quality meshes at the air gap regions. 
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