

2011

Multiscale Damage Detection in Conductive Composites

Raj C Thiagarajan, PhD ATOA Scientific Technologies Pvt Ltd

ATOA Scientific Technologies

Engineering Simulation For Innovation

ATOAST

- We Provide Multiphysics **Engineering Design Solutions**
- **Driven by Material Unity Vision**
- We are the first COMSOL Certified Consultant from India
- **ATOAST JOTHI foundation**

www.atoastech.com

Engineering Design Simulations for the First time Right

Multiscale Damage Detection in Conductive Composites

- Multiscale nature of damage
- Damage Modes in composites
- Damage detection techniques
- Self sensing Carbon fiber Composites
- Numerical model
 - Implementation
 - Results and discussion

Multiscale damage mechanism

> Structure

> Part

≻Laminate

- **≻**Fiber
- **≻**Matrix

Why

- Increase use of composites in safety critical application.
- Increase reliability and safety levels
- Reduce cost and cycle time

Focus on carbon fiber composites

Additional use may be gained through diagnostics (COST)

Damage Mechanisms

- Fiber
 - Fiber breaks
- Matrix
 - Matrix crack
- Interface
 - Delamination
 - Longitudinal cracks

Structural Health monitoring

Existing Techniques

 ultrasonic, acoustic emission, X-ray and eddy current Piezo sensors with ultrasonic tomography, Embedded Optical fibers (FBGs)

Limitations

- Based on external or embedded sensors.
- Embedded sensors/electrodes/FBGs lead to initiation of damage in composites.

Self sensing of Carbon fiber composites

Numerical investigation

 The electrical conduction mechanism and the effect of damage in CFRP composites were simulated in COMSOL using AC/DC Electric Currents Interface.

- Homogeneous composite model with effective properties
- Micromechanical model with constituent properties

Results: Fiber breaks

- UD composites
- Electrode on edge
- Resistance change vs fiber breaks
- Parallel resistance model behavior
- Very sensitive to fiber breaks.

% of Fibre Breaks

20

100

80

Results: Matrix Cracks

- Matrix crack density vs change in resistance
- Can detect matrix cracks also

Results: Delamination

- Delamination length vs resistance change.
- Delamination growth between fibres

Conclusions

- The COMSOL model results show that the electrical resistance change is sensitive to fiber breaks and delamination.
- The homogenized and micromechanical model demonstrated the changes in resistance as function of damage.
- The methodology developed can be used to improve the damage detection capability and reliability of composite structures by Virtual optimisation.