Effect of Bed Diffusion and Operating
 Parameters on Char Combustion in the
 Context of Underground Coal Gasification

by

Ganesh A Samdani, Shauvik De, Sanjay Mahajani and Anuradda Ganesh

Indian Institute of Technology Bombay, Mumbai.

- Introduction
- Kinetic Determination
- Boat Reactor Experiments
- Modeling of Boat Reactor Experiments
- Conclusions

Kinetic Determination

> Boat Reactor Experiments

Modeling of Boat Reactor Experiments

Conclusions

http://www.dti.gov.uk/energy/sources/renewables/publications/page19148.html

Importance of Combustion

- ➢ It is the essential heat source for endothermic gasification reactions.
- ➢It is the only reaction during early cavity growth.
- ➢So, to study effect of different parameters on combustion reaction becomes a very important part of understanding UCG.

> Kinetic Determination

> Boat Reactor Experiments

Modeling of Boat Reactor Experiments

Conclusions

TGA Experiments for Kinetics

Preliminary experiments conducted with different crucible fillings

Schematic of crucible filling

••• Model Fitting

Conversion vs. time at 600 °C

Random pore model gives the best fitting !!

Kinetic Parameters

BET Results :

BET surface area (S₀) = 179.16 m²/g $\psi = \frac{4\pi L_0 (1 - \varepsilon_0)}{S_0^2} = 3.8485$

From pore size distribution:

$$\mathcal{E}0 = 0.2531$$
;
 $L_0 = 2.754 \times 10^{12}$ cm

 Temperature (°C)
 K $\frac{ksS_0}{(1-\varepsilon_0)}$ (1/sec)

 500
 5x10^{-3}

 550
 1.2x10^{-2}

 600
 4x10^{-2}

k _o	Ea
$0.2 \ge 10^{6} (\text{sec}^{-1})$	116.7 kJ/mol

Kinetic Determination

> Boat Reactor Experiments

Modeling of Boat Reactor Experiments

Conclusions

••• Experimental Setup

••• Experimental Conditions

- > At low temperature & relatively higher flow rates
- Char particle size < 150 micron</p>
- > Temperature = 500 °c, 550 °c, 600 °c
- Flow rate = 75 ml/min, 100 ml/min, 125 ml/min
- Bed height = fully filled and monolayer

- Kinetic Determination
- > Boat Reactor Experiments
- Modeling of Boat Reactor Experiments
- Conclusions

••• Boat Reactor Geometry for Modeling

••• Governing Equations

$$\frac{\partial \mathbf{u}}{\partial t} + \rho(\mathbf{u} \cdot \nabla)\mathbf{u} = \nabla \cdot [-p\mathbf{I} + \tau] + \mathbf{F}$$
Navier Stokes equation
$$\frac{\partial c}{\partial t} + \mathbf{u} \cdot \nabla c = \nabla \cdot (D\nabla c)$$
Mass transport equation in quartz tube
$$\frac{\partial c}{\partial t} = \nabla \cdot (D\nabla c) + R$$
Mass transport equation in boat

Reaction: $C + O_2 \rightarrow CO_2$

••• Boundary Conditions

boundary no.	velocity	O ₂	CO ₂	char
1	u_in	c_o2_fluxin		NA
2	outlet	convecti	ve flow	NA
3,4,5		Zei	ro flux (wall	.)
6	wall	contir	nuity	no flux
all other		zero flu>	k (wall)	NA

domain no.	velocity	O ₂	CO ₂	char
1	0	Zero conc	centration	NA
2	NA	Zero conc	centration	c_cinit

Results:

• •

Time= 0 Surface: Concentration (molim*3) Time=500 Surface: Concentration (mol/m *3) A (%) ())) Fime=1003 Surface: Concentration (mol/m⁻³) 70 Time=1500 Surface: Concentration (maimi*3) M 50 Time=2500 Surface Concentration (motion ~3) 40 Time=3500 Surface: Concentration (mn//m*3) Time=4500 Surface. Concentration (molim*3) 100 Time=5500 Surface: Concentration (mol/m/13)

Evolution of char concentration in boat over time

Results: Outlet Gas Concentration

Qualitatively matches with experimental results !!

- Kinetic Determination
- Boat Reactor Experiments
- Modeling of Boat Reactor Experiments
- Conclusions

••• Conclusion

- Effect of different operating parameters and bed diffusivity/bed height on the char combustion in UCG like condition are evaluated.
- Multiphysics modeling using COMSOL provided an insight of the experiments.
- Dependence on partial pressure of oxygen is to be determined and modeled.
- Modeling strategy is to be extended to real UCG conditions for early cavity growth.

Thank you !

••• References

[1] World Energy Council., "Deciding the future: Energy policy scenarios to 2050", *Technical Report, World energy Council* (2007)

[2] Aghalayam, P., "Underground Coal Gasification: A Clean Coal Technology" in Handbook on Combustion, Wiley-VCH books

[3] Park, K. Y. and Edgar, T. F., "Modeling of Early Cavity Growth for Underground Coal Gasification" *Ind. Eng. Chem. Res.* **26**, 237-246 (1987)

[4] Muhammad F. Irfan, Muhammad R. Usman and K. Kusakabe, "Coal gasification in CO2 atmosphere and its kinetics since 1948: A brief review" in *Energy*, **36**, 12-40, (2011)

[5] Perkins, G. and Sahajwalla, V., ``A Numerical Study of the Effects of Operating Conditions and Coal Properties on Cavity Growth in Underground Coal Gasification", *Energy & Fuels*, **20**, 596-608 (2006)

[6] Daggupati, S, Mandapati, R., Mahajani, S.M., Ganesh, A., Mathur, D.K., Sharma, R.K. and Aghalayam, P., 2009, "Laboratory Studies On Combustion Cavity Growth In Lignite Coal Blocks In The Context Of Underground Coal Gasification" in *Energy*, **35**, 2374-2386, (2010)

[7] P. Ollero, A. Serrera, R. Arjona and S. Alcantarilla, "Diffusional effects in TGA gasification experiments for kinetic determination" in *Fuel*, **81**, 1989–2000, (2002)

• • Extra Slides

	Name	Expression
	rho	(100000*32/1000/8.314/873) [kg/m^3]
	eta	(70e-6/rho) [Pa/s*kg/m^3]
	u_in	.05[m/s]
	D1_02	5e-5[m^2/s]
	D2_02	1e-5[m^2/s]
	c_cinit	(1/12e-3) [mole/m^3]
	D1_co2	5e-5[m^2/s]
	D2_co2	1e-5[m^2/s]
	c_o2_fluxin	.1[mol/m^2/s]
tor	psi	3.85
ιοι	k0	2e9
	E	95700
	R_g	8.314
	Т	600 [K]

ſ

Name	Expression	
R_c	-k1*c_o2	
R_02	-k1*c_o2	
R_co2	k1*c_o2	
k1	ka1*(1-psi*log(1-X))^.5*flc2hs(X, 1e-3)	
Х	max((c_cinit-c_c)/c_cinit,0)	
ka1	k0*exp(-E/R_g/T)	

The boat reactor set up consists of

a cylindrical quartz tube (length 0.8 m and diameter 0.05 m), and

a rectangular quartz boat is placed inside the quartz tube. Boat dimensions are: length 0.15m, breadth 0.035m and thickness 0.005m.

	Dry basis	
Proximate	Volatile matter	44.92%
Analysis	Fixed Carbon	46.61%
_	Ash	8.47%
Ultimate	Carbon	40.594%
Analysis	Hydrogen	5.672%

Experimental Results

Figure 2 Concentration of CO2 and O2 vs. time at 500 and 550°C respectively (fig. a, b, c, d), comparison of monolaver and complete filling at 500°C, 100 ml/min (fig. e, f)

Assumptions:

□ Incompressible laminar flow

- □ Inlet gas is pure oxygen
- □ Flow of gas in the channel,
- \Box Diffusion and combustion in the boat.
- \square 2-D geometry modelled.

The mesh quality and quantity is as following: minimum element quality: 0.6689, average element quality: 0.9909, triangular elements: 151779.

