$$
\begin{gather*}
\left(\partial_{t}-i x\right) \mathbf{b}=-\frac{3}{2 \bar{\omega}_{A}} b_{x} \hat{y}+i \mathbf{u} \tag{1}\\
\left(\partial_{t}-i x\right) \mathbf{u}=\frac{2}{\bar{\omega}_{A}} u_{y} \hat{x}-\frac{1}{2 \bar{\omega}_{A}} u_{x} \hat{y}-\frac{3}{2 \bar{\omega}_{A}} \partial_{x} Q \hat{x}-i Q \hat{y}-i \frac{1}{\kappa} Q \hat{z}+i \mathbf{b} \tag{2}\\
\frac{3}{2} \partial_{x} u_{x}+i \bar{\omega}_{A} u_{y}+\frac{i \bar{\omega}_{A}}{\kappa} u_{z}=0 \tag{3}
\end{gather*}
$$

This last equation may look a little odd but it is really just $\nabla \cdot \mathbf{b}=0$ after making the original equations dimensionless.

After putting them in component form:

$$
\begin{gathered}
\frac{\partial}{\partial t} b_{x}=i x b_{x}+i u_{x} \\
\frac{\partial}{\partial t} b_{y}=i x u_{y}-\frac{3}{2 \bar{\omega}_{A}} b_{x}+i u_{y} \\
\frac{\partial}{\partial t} b_{z}=i x b_{z}+i u_{z} \\
\frac{\partial}{\partial t} u_{x}=i x u_{x}+\frac{2}{\bar{\omega}_{A}} u_{y}-\frac{3}{2 \bar{\omega}_{A}} \frac{\partial Q}{\partial x}+i b_{x} \\
\frac{\partial}{\partial t} u_{y}=i x u_{y}-\frac{1}{2 \bar{\omega}_{A}} u_{x}-i Q+i b_{y} \\
\frac{\partial}{\partial t} u_{z}=i x u_{z}-\frac{i}{\kappa} Q+i b_{z}
\end{gathered}
$$

Subscripts x, y and z indicate the x, y and z components of \mathbf{b} and \mathbf{u}.
Q is found by taking the divergence of (2) to get

$$
\frac{\partial^{2} Q}{\partial x^{2}}-K^{2} Q-F=0
$$

where $K^{2}=\frac{4}{3} i \bar{\omega}_{A} \sqrt{1+\frac{1}{\kappa^{2}}}$ and $F=\frac{4}{3} \frac{\partial u_{y}}{\partial x}+\frac{4 i \bar{\omega}_{A} u_{x}}{9}$
The initial conditions are

$$
\begin{gathered}
b_{x}(x, 0)=e^{-x^{2}} \\
b_{y}(x, 0)=\frac{3 i}{2 \bar{\omega}_{A}} \frac{\partial b_{x}(x, 0)}{\partial x} \\
b_{z}(x, 0)=u_{x}(x, 0)=u_{y}(x, 0)=u_{z}(x, 0)=0
\end{gathered}
$$

With everything going to zero at infinity. As for Q , it should go to zero at + and - infinity as well.

